Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ab, ta có 10a +b = k.a.b
Điều kiện : a,b nhận giá trị từ 0 đến 9 và k là số nguyên dương
=> b= 10.a : (k.a -1)
=>b =10:(k-1/a)
Do điều kiện đã đặt nên (k - 1:a )phải có giá trị 5/3 hoặc 2 hoặc 2,5 hoặc 5 hoặc 10 (vì số 10 chỉ chia cho các số nay là có số nguyên, dương và <=9)
* Nếu k-1/a = 2 => a(k-2) = 1,
* Nếu k-1/a = 5 => a(k-5) = 1,
* Nếu k-1/a = 10 => a(k-10) = 1,với 3 trường hợp nêu trên thì dễ thấy a=1; => b=10/(k-1), theo điều kiện thì b= 1 hoặc 2 hoặc 5.Vậy số đó là các số : 11; 12 hoặc 15
* Nếu k-1/a = 2,5 =>a=1/(k-2,5) => a nhận giá trị là 2=> b= 10/(k-1/2) = 20/(2k-1) thì b chỉ nhận giá trị là 4. Vậy các số đó là 24
*Nếu k-1/a = 5/3 =>a.(3k-5)=3 => a= 3(vì tích 2 số nguyên = 3 thì chỉ có số 1 và số 3) => b=6
Vậy số đó là số 36.
Kết luận : các số đó là 11; 12; 15; 24 và 36.
Ta có : \(12a+7b=64\)
Do \(64⋮4,12a⋮4\) \(\Rightarrow7b⋮4\) mà \(\left(7,4\right)=1\)
\(\Rightarrow b⋮4\) (1)
Từ giả thiết \(\Rightarrow7b\le64\) \(\Leftrightarrow b\le9\) kết hợp với (1)
\(\Rightarrow b\in\left\{4,8\right\}\)
+) Với \(b=4\) thì : \(12a+7\cdot4=64\)
\(\Leftrightarrow12a=36\)
\(\Leftrightarrow a=3\) ( thỏa mãn )
+) Với \(b=8\) thì \(12a+7\cdot8=64\)
\(\Leftrightarrow12a=8\)
\(\Leftrightarrow a=\frac{8}{12}\) ( loại )
Vậy : \(\left(a,b\right)=\left(3,4\right)\)
Từ hằng đẳng thức quen thuộc sau:
a^n -b^n = (a-b).[a^(n-1) +a^(n-2).b + a^(n-3).b^2 +... + a.b^(n-2) +b^(n-1)]
Ta dẫn đến hệ quả:
Nếu a;b là các số tự nhiên khác nhau thì: (a^n-b^n) chia hết cho (a-b)
Áp dụng kết quả trên; ta được:
3^(6n) -2^(6n) = (3^6)^n - (2^6)^n = 729^n - 64^n chia hết cho (729-64)
Vậy: 3^(6n) -2^(6n) chia hết cho 665
Mà: 665 = 35.19
Do đó: 3^(6n) -2^(6n) chia hết cho 35
Bài 1:
(x-6)^2020+2(y+3)^2022=0
=>x-6=0 và y+3=0
=>x=6 và y=-3
= ( - 29) . 135 + 13 . 135 +( - 2730)
= 135 . [ ( - 29) + 13] + ( - 2730) mik nghĩ là như này
= 135 . ( - 16) + ( - 2730)
= ( - 2160) + ( - 2730)
= - 4890
Bài 3
Số khẩu trang lớp 6A ủng hộ là : \(500\times\frac{2}{5}=200\text{ hộp}\)
Số khẩu trang lớp 6B ủng hộ là : \(120:\frac{3}{4}=160\text{ hộp}\)
Số khẩu trang lớp 6C ủng hộ là : \(500-200-160=140\text{ hộp}\)