K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2019

c, \(2^{300}\)và \(3^{200}\)

Ta có

\(2^{300}=8^{100}\)

\(3^{200}=9^{100}\)

Vì \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)

d, \(3^{300}\)và \(4^{200}\)

Ta có

\(3^{300}=27^{100}\)

\(4^{200}=16^{100}\)

Vì \(16^{100}< 27^{100}\Rightarrow3^{300}>4^{200}\)

a,b mik lười làm quá

11 tháng 10 2019

a, Ta có: S = 10 + 12 + 14 + ... + 2010

Các số hạng cách đều nhau 2 đơn vị.

Có số số hạng là: ( 2010 - 10 ) / 2 + 1 = 500 (số)

\(\Rightarrow\)S = ( 2010 +10 ) * 500 / 2

\(\Rightarrow\)S = 505000

Vậy S = 505000

b, Ta có: S = 1 + 2 + 3 + ... + 999

Các số hạng cách đều nhau 1 đơn vị.

Có số số hạng là: ( 999 - 1 ) / 1 +1 =  999 (số)

\(\Rightarrow\) S = ( 999 + 1 ) * 999 / 2 =  499500

Vậy S = 499500

c, 2300 và 3200

Ta có: 2300 = (23)100 = 8100

3200 = (32)100 = 9100

Vì 9 > 8 > 1 và 100 > 0

\(\Rightarrow\)9100 > 8100

Hay 2300 = 3200

Vậy 2300 = 3200

d, 3300 và 4200

Ta có: 3300 = (33)100 = 27100

4200 = (42)100 = 16100

Vì 27 > 16 > 1 và 100 > 0

\(\Rightarrow\)27100 > 16100

Hay 3300 > 4200

Vậy 3300 > 4200

21 tháng 8 2019

Đề bài bn ghi thek thì ai làm nổi cho bn :V ?

25 tháng 12 2020

ko có biết

21 tháng 8 2019

mng giúp em với tối em nộp bài rồi a

19 tháng 7 2021

cức + điên= lan ngọc cức điên

19 tháng 8 2019

Lời giải :

1. \(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)

\(=\frac{a^3}{8}+\frac{3a^2b}{4}+\frac{3ab^2}{2}+b^3+\frac{a^3}{8}-\frac{3a^2b}{4}+\frac{3ab^2}{2}-b^3\)

\(=\frac{a^3}{4}+3ab^2\)

19 tháng 8 2019

Lời giải :

2. \(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy...

19 tháng 8 2019

1) \(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)

\(=\left(\frac{a}{2}+b\right)^2+\left(\frac{a}{2}-b\right)^2\)

\(=\left(\frac{a}{2}+b\right)\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{b}b+b^2\right]+\left(\frac{a}{2}-b\right)\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)

\(=\frac{a}{2}\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{2}b+b^2\right]+b\left[\left(\frac{a}{2}\right)^2+2.\frac{a}{2}b+b^2\right]+\frac{a}{2}\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)\(-b\left[\left(\frac{a}{2}\right)^2-2.\frac{a}{2}b+b^2\right]\)

\(=\frac{a^3}{8}+\frac{a^2b}{2}+\frac{ab^2}{2}+\frac{ba^2}{4}+b^2a+b^3+\frac{a^3}{8}-\frac{a^2b}{2}+\frac{ab^2}{2}-\frac{ba^2}{4}+b^2a-b^3\)

\(=\frac{a^3}{4}+3ab^2\)

2) \(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow x^3-3x^2.1+3.x.1^2-1^3=0\)

\(\Leftrightarrow\left(x+1\right)^3=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=0-1\)

\(\Rightarrow x=-1\)

3) \(A=\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(A=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9\)

\(A=8\)

Vậy: biểu thức không phụ thuộc vào biến

19 tháng 8 2019

1) \(\left(x+5\right)^3-x^3-125\)

\(=\left(x+5\right)\left(x^2+2x.5+5^2\right)-x^3-125\)

\(=x\left(x^2+2x.5+5^2\right)+5\left(x^2+2x.5+5^2\right)-x^3-125\)

\(=x^3+10x^2+25x+5x^2+50x+125-x^3-125\)

\(=15x^2+75x\)

2) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)

\(\Leftrightarrow x^3-4x^2+4x-2x^2+8x-8+6x^2+12x+6-x^3+12=0\)

\(\Leftrightarrow24x+10=0\)

\(\Leftrightarrow24x=0-10\)

\(\Leftrightarrow24x=-10\)

\(\Leftrightarrow x=-\frac{10}{24}=-\frac{5}{12}\)

\(\Rightarrow x=-\frac{5}{12}\)

3) \(\left(x-1\right)^3-x^3+3x^2-3x+1\)

\(=\left(x-1\right)\left(x^2-2x+1\right)-x^3+3x^2-3x+1\)

\(=x\left(x^2-2x+1\right)-\left(x^2-2x+1\right)-x^3+3x^2-3x+1\)

\(=x^3-2x^2+x-x^2+2x-1-x^3-3x^2-3x+1\)

\(=0\)

Vậy: biểu thức không phụ thuộc vào biến