K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 9:

Ta có: \(a-4+\sqrt{16-8a+a^2}\)

\(=a-4+\sqrt{\left(a-4\right)^2}\)

\(=a-4+a-4\)

=2a-8

a)\(\dfrac{x^2-3}{x^2+2x\sqrt{3}+3}=\dfrac{\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)}{\left(x+\sqrt{3}\right)^2}=\dfrac{x-\sqrt{3}}{x+\sqrt{3}}\)

\(\dfrac{x^2-2x\sqrt{15}+15}{x^2-15}=\dfrac{\left(x-\sqrt{15}\right)^2}{\left(x-\sqrt{15}\right)\left(x+\sqrt{15}\right)}=\dfrac{x-\sqrt{15}}{x+\sqrt{15}}\)

\(\dfrac{4x^2-6}{4x^2-4x\sqrt{6}+6}=\dfrac{\left(2x-\sqrt{6}\right)\left(2x+\sqrt{6}\right)}{\left(2x-\sqrt{6}\right)^2}=\dfrac{2x+\sqrt{6}}{2x-\sqrt{6}}\)

b) \(\dfrac{a^2+2a\sqrt{8}+8}{a^2-8}=\dfrac{\left(a+\sqrt{8}\right)^2}{\left(a+\sqrt{8}\right)\left(a-\sqrt{8}\right)}=\dfrac{a+\sqrt{8}}{a-\sqrt{8}}\)

\(\dfrac{9x^2-15}{9x^2-6x\sqrt{15}+15}=\dfrac{\left(3x-\sqrt{15}\right)\left(3x+\sqrt{15}\right)}{\left(3x-\sqrt{15}\right)^2}=\dfrac{3x+\sqrt{15}}{3x-\sqrt{15}}\)

\(\dfrac{a^2-2a\sqrt{7}+7}{a^2-7}=\dfrac{\left(a-\sqrt{7}\right)^2}{\left(a-\sqrt{7}\right)\left(a+\sqrt{7}\right)}=\dfrac{a-\sqrt{7}}{a+\sqrt{7}}\)

NV
9 tháng 1 2022

Coi như bài toán đã cho là x;y;z hết từ điều kiện đến biểu thức (lẫn lộn abc với xyz)

Đặt \(\left(x^3;y^3;z^3\right)=\left(a^2;b^2;c^2\right)\Rightarrow abc=1\)

Ta có: \(Q=\dfrac{1}{a^2+b^2+b^2+1+2}+\dfrac{1}{b^2+c^2+c^2+1+2}+\dfrac{1}{c^2+a^2+a^2+1+2}\)

\(Q\le\dfrac{1}{2ab+2b+2}+\dfrac{1}{2bc+2c+2}+\dfrac{1}{2ca+2a+2}\)

\(Q\le\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{ab}{ab.bc+abc+ab}+\dfrac{b}{cab+ab+b}\right)\)

\(Q\le\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{ab}{b+1+ab}+\dfrac{b}{1+ab+b}\right)=\dfrac{1}{2}\)

Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(AB^2+AD^2=BD^2\)

\(\Leftrightarrow BD^2=6^2+8^2=100\)

hay BD=10(cm)

Ta có: ABCD là hình chữ nhật

mà O là giao điểm của hai đường chéo AC và BD

nên O là trung điểm chung của AC và BD

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAD vuông tại A có AH là đường cao ứng với cạnh huyền BD, ta được:

\(AH\cdot BD=AB\cdot AD\)

\(\Leftrightarrow AH=4.8\left(cm\right)\)

Ta có: ΔABD vuông tại A

mà AO là đường trung tuyến ứng với cạnh huyền BD

nên \(AO=\dfrac{BD}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAHO vuông tại H, ta được:

\(AO^2=AH^2+HO^2\)

\(\Leftrightarrow HO^2=5^2-4.8^2=1.96\)

hay HO=1,4(cm)

Diện tích tam giác AHO là:

\(S_{AHO}=\dfrac{HA\cdot HO}{2}=\dfrac{1.4\cdot4.8}{2}=3.36\left(cm^2\right)\)

10: Ta có: \(\left(\dfrac{x-4}{x-2\sqrt{x}}+\dfrac{3}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)

\(=\dfrac{x+3\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-4-x}\)

\(=\dfrac{-x-3\sqrt{x}+4}{4}\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Lời giải:

Đặt \(\sqrt[3]{5\sqrt{2}+7}=m; \sqrt[3]{5\sqrt{2}-7}=n\)

\(m^3-n^3=14\)

\(mn=1\)

\((a+b+c)^3=(m-n)^3=m^3-3mn(m-n)-n^3=14-3(m-n)\)

\(\Leftrightarrow (a+b+c)^3=14-3(a+b+c)\)

\(\Leftrightarrow (a+b+c)^3+3(a+b+c)-14=0\)

\(\Leftrightarrow (a+b+c)^2[(a+b+c)-2]+2(a+b+c)(a+b+c-2)+7(a+b+c-2)=0\)

\(\Leftrightarrow (a+b+c-2)[(a+b+c)^2+2(a+b+c)+7]=0\)

Dễ thấy biểu thức trong ngoặc vuông $>0$ nên $a+b+c-2=0$

$\Leftrightarrow a+b+c=2$

$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{2^2-1}{2}=\frac{3}{2}$