K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi số khẩu trang phải sản xuất ban đầu là x

Theo đề, ta có: x/2=(x+4000)/3

=>3x=2x+8000

=>x=8000

11 tháng 1 2023

Gọi số chiếc khẩu trang theo kế hoạch mà mỗi ngày tổ phải may là: `x` (chiếc)

    `ĐK: x \in N`*

Trên thực tế tổ đã may mỗi ngày số chiếc là: `x+30` (chiếc)

Thời gian thực tế mà tổ làm xong là: `[2600]/x -1` (ngày)

Vù tổ không những làm xong trược `1` ngày mà còn may thêm được `10` chiếc nên ta có:

    `(x+30)(2600/x -1)=2600+10`

`<=>2600-x+78000/x -30=2610`

`<=>x^2+40x-78000=0`

`<=>x^2-260x+300x-78000=0`

`<=>(x-260)(x+300)=0`

`<=>[(x=260(t//m)),(x=-300(ko t//m)):}`

Vậy theo kế hoặc mỗi ngày tổ phải may `260` chiếc khẩu trang

11 tháng 1 2023

bn giải 2 phương trình đc ko ạ

5 tháng 6 2015

Gọi x là sản ppham xưởng sản xuất trong 1 ngày theo kế  hoạch (x>0)

=>Số ngày theo kế hoạch là :\(\frac{110}{x}\)

Số ngày thực tế là \(\frac{1100}{x+5}\)theo gia thiet cua bai toan ta co :

\(\frac{1100}{x}-\frac{1100}{x+5}=2\)

<=>1100(x+5)-1100x=2x(x+5)

<=>2x^2+10x-5500=0

<=>x=50hay x=-55 loai

​Vậy theo kế hoạch mỗi ngày phân xưởng phải sản xuất là 50 sản phẩm

28 tháng 7 2020

Gọi số sản phẩm mà phân xưởng làm trong 1 ngày là x ( x > 0 )

=> Số ngày quy định = \(\frac{1100}{x}\)( ngày )

Mỗi ngày phân xưởng sản xuất vượt mức 5 sản phẩm

=> Số ngày hoàn thành = \(\frac{1100}{x+5}\)( ngày )

Vì thế kế hoạch hoàn thành sớm hơn quy định 2 ngày

=> Ta có phương trình : \(\frac{1100}{x}-\frac{1100}{x+5}=2\)

                               \(\Leftrightarrow\frac{1100\left(x+5\right)}{x\left(x+5\right)}-\frac{1100\cdot x}{x\left(x+5\right)}=\frac{2x\left(x+5\right)}{x\left(x+5\right)}\)

                               \(\Leftrightarrow1100x+5500-1100x=2x^2+10x\)

                               \(\Leftrightarrow2x^2+10x-1100x-5500+1100x=0\)

                               \(\Leftrightarrow2x^2+10x-5500=0\)

\(\Delta'=b'^2-ac=5^2-2\cdot\left(-5500\right)=25+11000=11025\)

\(\Delta'>0\)nên phương trình đã cho có hai nghiệm phân biệt :

\(\hept{\begin{cases}x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-5+\sqrt{11025}}{2}=50\\x_2=\frac{-b-\sqrt{\Delta'}}{a}=\frac{-5-\sqrt{11025}}{2}=-55\end{cases}}\)

x > 0 => x = 50

Vậy theo kế hoạch , mỗi ngày phân xưởng sản xuất 50 sản phẩm

2 tháng 7 2021

gọi số khẩu trang được giao của tổ 1 , tổ 2 được giao lần lượt là x,y(chiếc)(0<x,y<3200)

theo kế hoạch số khẩu trang cần làm \(x+y=3200\)(chiếc)

thực tế vượt mức 2 tổ làm được: \(118\%x+121\%y=3800\)(chiếc)

=>hệ pt: \(\left\{{}\begin{matrix}x+y=3200\\118\%x+121\%y=3800\end{matrix}\right.=>\left\{{}\begin{matrix}x=2400\left(tm\right)\\y=800\left(tm\right)\end{matrix}\right.\)

13 tháng 4 2020

Gọi x là số sản phẩm dự định sản xuất trong 1 ngày.(1200>x>0)

theo đề bài ta có phương trình :

\(\frac{1200}{x+20}=\frac{1200}{x}+3\)

Giải ra ta được:

x=80

Vậy theo kế hoạch mỗi ngày xưởng sản xuất 80 sản phẩm.

21 tháng 6 2021

gọi số sản phẩ mỗi ngày là x(sản phẩm)(0<x<1100,x\(\in N\))

gọi thời gian làm dự định là y(ngày)(y>0)

=>hệ pt:\(\left\{{}\begin{matrix}xy=1100\\y-\dfrac{1100}{x+5}=2\end{matrix}\right.\)\(< =>\left\{{}\begin{matrix}y=\dfrac{1100}{x}\\\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\left(1\right)\end{matrix}\right.\)

*giải pt(1)\(=>\left\{{}\begin{matrix}x=50\left(TM\right)\\x=-55\left(loai\right)\end{matrix}\right.\) 

Vậy....

21 tháng 6 2021

Gọi số sản phẩm họ làm trong 1 ngày theo kế hoạch là x

Gọi số sản phẩm họ làm trong 1 ngày thực tế là y

(sản phẩm/ngày; x; y \(\in N\)*)

Do thực tế, mỗi ngày họ vượt mức 5 sản phẩm => Ta có phương trình:

y - x = 5 (1)

Thời gian họ sản xuất theo kế hoạch là \(\dfrac{1100}{x}\) (ngày)

Thời gian họ sản xuất thực tế là \(\dfrac{1100}{y}\) (ngày)

Do phân xưởng đó hoàn thành kế hoạch sớm hơn 2 ngày => Ta có phương trình:

\(\dfrac{1100}{x}-\dfrac{1100}{y}=2\)

<=> \(\dfrac{1100y-1100x-2xy}{xy}=0\)

<=> \(1100\left(y-x\right)-2xy=0\)

<=> \(5500-2xy=0\)

<=> \(xy=2750< =>x=\dfrac{2750}{y}\)

Thay x = \(\dfrac{2750}{y}\) vào phương trình (1), ta có:

\(y-\dfrac{2750}{y}=5\)

<=> \(y^2-5y-2750=0\)

<=> (y-55)(y+50) = 0

<=> \(\left[{}\begin{matrix}y=55\left(c\right)\\y=-50\left(l\right)\end{matrix}\right.\)

<=> x = 50 (c)

Theo kế hoạch, mỗi ngày phân xưởng sản xuất được 50 sản phẩm