Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d: Ta có: \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}\)
\(=\dfrac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{11}+1-\sqrt{11}+1}{\sqrt{2}}\)
\(=\sqrt{2}\)
d: Ta có: \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}\)
\(=\dfrac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{11}+1-\sqrt{11}+1}{\sqrt{2}}\)
\(=\sqrt{2}\)
\(2,\\ a,\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(x\ge1\right)\\ \Leftrightarrow2\sqrt{x-1}+3\sqrt{x-1}-5\sqrt{x-1}=7\\ \Leftrightarrow0\sqrt{x-1}=7\Leftrightarrow x\in\varnothing\\ b,\sqrt{2x^2-3}=4\left(x\le-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\le x\right)\\ \Leftrightarrow2x^2-3=16\\ \Leftrightarrow x^2=\dfrac{19}{2}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)
\(1,\\ A=\sqrt{5+4x}+\sqrt{7-3x}\\ ĐKXĐ:\left\{{}\begin{matrix}5+4x\ge0\\7-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{5}{4}\\x\le\dfrac{7}{3}\end{matrix}\right.\)
a)
\(7\sqrt{12}+\frac{1}{3}\sqrt{27}-\sqrt{75}\)
\(=14\sqrt{3}+\sqrt{3}-5\sqrt{3}\)
\(=10\sqrt{3}\)
b)
\(\left(2\sqrt{20}+\sqrt{125}-3\sqrt{80}\right):5\)
\(=\left(4\sqrt{5}+5\sqrt{5}-12\sqrt{5}\right):5\)
\(=-3\sqrt{5}:5\)
\(=\frac{-3\sqrt{5}}{5}\)
c)
\(3\sqrt{12a}-5\sqrt{3a}+\sqrt{48a}\)
\(=6\sqrt{3a}-5\sqrt{3a}+4\sqrt{3a}\)
\(=5\sqrt{3a}\)
đk: \(x\ge0\)
Ta có: \(\sqrt{x}+2\sqrt{x+3}=x+4\)
\(\Leftrightarrow\left(x+3\right)-2\sqrt{x+3}+1=\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-3}-1\right)^2}=\sqrt{x}-1\)
\(\Leftrightarrow\left|\sqrt{x-3}-1\right|=\sqrt{x}-1\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-3}-1=\sqrt{x}-1\\\sqrt{x-3}-1=1-\sqrt{x}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-3}=\sqrt{x}\left(ktm\right)\\\sqrt{x-3}+\sqrt{x}=2\end{cases}}\)
\(\Leftrightarrow x-3+x+2\sqrt{x\left(x-3\right)}=4\)
\(\Leftrightarrow2\sqrt{x^2-3x}=7-2x\)
\(\Leftrightarrow4\left(x^2-3x\right)=\left(7-2x\right)^2\)
\(\Leftrightarrow4x^2-12x=49-28x+4x^2\)
\(\Leftrightarrow16x=49\)
\(\Rightarrow x=\frac{49}{16}\)
ĐKXĐ:\(x>-3\)
\(\sqrt{x}+\sqrt{x+3}=x+4\)\(\Leftrightarrow x+x+3+2\sqrt{x}\sqrt{x+3}=\left(x+4\right)^2\)
\(\Leftrightarrow2x+3+2\sqrt{x^2+3x}=x^2+8x+16\)
\(\Leftrightarrow x^2+8x+16-2x-3-2\sqrt{x^2+3x}=0\)
\(\Leftrightarrow\left(x^2+3x-2\sqrt{x^2+3x}+1\right)+3x+12=0\)
\(\Leftrightarrow\left(\sqrt{x^2+3x}-1\right)^2+3\left(x+4\right)=0\)
Ta thấy:\(\hept{\begin{cases}\left(\sqrt{x^2+3x}-1\right)^2\ge0\\x>-3\Leftrightarrow3\left(x+4\right)>0\end{cases}}\)
\(\Rightarrow\left(\sqrt{x^2+3x}-1\right)^2+3\left(x+4\right)>0\)
\(\Leftrightarrow x\in\varnothing\)
Vậy phương trình vô nghiệm.
\(\sqrt{x+4\sqrt{x-1}+3}-\sqrt{4x+4\sqrt{x-1}-3}=1\)(đk:\(1\le x< 2\)) Lý do có điều kiện này là nhờ vào việc VT=1>0
\(\Leftrightarrow\sqrt{\left(x-1\right)+4\sqrt{x-1}+4}-\sqrt{4\left(x-1\right)+4\sqrt{x-1}+1}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+2\right)^2}-\sqrt{\left(2\sqrt{x-1}+1\right)^2}=1\)
\(\Leftrightarrow\left(\sqrt{x-1}+2\right)-\left(2\sqrt{x-1}+1\right)=1\)
\(\Leftrightarrow\sqrt{x-1}=0\)
\(\Leftrightarrow x=1\)(thõa mãn điều kiện)
Ta có : \(\sqrt{x+4\sqrt{x-1}+3}-\sqrt{4x+4\sqrt{x-1}-3}=1\) ( ĐK : \(x\ge1\) )
\(\Leftrightarrow\sqrt{\left(x-1\right)+4\sqrt{x-1}+4}-\sqrt{4.\left(x-1\right)+4.\sqrt{x-1}+1}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+2\right)^2}-\sqrt{\left(2\sqrt{x-1}+1\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}+2\right|-\left|2\sqrt{x-1}+1\right|=1\)
\(\Leftrightarrow\sqrt{x-1}+2-2\sqrt{x-1}-1=1\)
\(\Leftrightarrow\sqrt{x-1}=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\) ( Thỏa mãn )
\(1\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
\(=1\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(1+3\sqrt{2}-\sqrt{6}-\sqrt{3}\right)\)
\(=1\left(\sqrt{6}+1\right)\left(2\sqrt{6}-2\right)\)
\(=2\left(\sqrt{6}-1\right)\left(\sqrt{6}+1\right)=10\)
Cứ nhân lần lược vào rồi rút gọn sẽ được như trên
Đọc cái đề giống như muốn hack não quá. Ghi rõ đi bạn