Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét \(\Delta AEC\) và \(\Delta ADB\) có :
\(\widehat{BAC}:chung\)
\(\widehat{AEC}=\widehat{ADB}=90^o\)
\(\Rightarrow\)\(\Delta AEC\) \(\sim\) \(\Delta ADB\)
\(\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\)
Xét \(\Delta AED\) và \(\Delta ACB\) có :
\(\frac{AE}{AD}=\frac{AC}{AB}\)
\(\widehat{BAC}:chung\)
\(\Rightarrow\) \(\Delta AED\) \(\sim\) \(\Delta ACB\) (cgc )
\(\Rightarrow\widehat{ADE}=\widehat{ABC}\)
Bài 2:
Số chất béo chứa trong thùng 5l: \(5.5\%=0,25\) (l)
Số chất béo chứa trong thùng 3l: \(3.3\%=0,09\) (l)
Tỉ lệ chất béo trong thùng lớn: \(\frac{0,25+0,09}{5+3}.100\%=4,25\%\)
Vậy ...
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E co
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AB*AE;AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc A chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
b: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
=>góc ADE=góc ABC
ĐÁP ÁN BÀI HÌNH CÂU 3, 4 ĐỀ THI TOÁN 8 KỲ 2 TINH BẮC NINH NĂM HỌC 2014-2015
3. Từ ID.IE=IM2-MC2 = ( IM - MC ) ( IM + MC ) = IB. IC ( vì MB = MC ). Xét tam giác IDB và tam giác IEC có góc I chung, góc IDB = góc ICE ( vì phụ với hai góc bằng nhau góc ADE = góc ABC theo câu 2). suy ra tam giác IBD đồng dạng tam giác IEC(g-g). suy ra ID/IC = IB/IIE => ID.IE = IB.IC hay ID.IE=IM2-MC2.(đpcm).
4. Hạ đường cao AH cắt BC tại K. Chứng minh được tam giác BHK đồng dạng tam giác BCD và tam giác CHK đồng dạng tam giác CBE (g-g). Suy ra BH. BD = BC. BK và CH.CE = BC. CK => P = BH.BD + CH.CE = BC ( BK+CK ) = BC. BC= BC2
Thay BC = 15 vào biểu thức ta được P = BH.BD + CH.CE = 152 = 225.