Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a) Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC(ΔBAC cân tại A)
AM chung
Do đó: ΔABM=ΔACM(cạnh huyền-cạnh góc vuông)
Suy ra: BM=CM(hai cạnh tương ứng)
mà điểm M nằm giữa hai điểm B và C
nên M là trung điểm của BC
Bài 1:
ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
a) Ta có: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\dfrac{\left(x+2\right)\left(x-2\right)}{x+2}+\dfrac{10-x^2}{x+2}\right)\)
\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\dfrac{x^2-4+10-x^2}{x+2}\)
\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)
\(=\dfrac{-1}{x-2}\)
b) Ta có: \(\left|x\right|=\dfrac{1}{2}\)
nên \(x\in\left\{\dfrac{1}{2};\dfrac{-1}{2}\right\}\)
Thay \(x=\dfrac{1}{2}\) vào biểu thức \(A=\dfrac{-1}{x-2}\), ta được:
\(A=-1:\left(\dfrac{1}{2}-2\right)=-1:\dfrac{-3}{2}=\dfrac{-1\cdot2}{-3}=\dfrac{2}{3}\)
Thay \(x=-\dfrac{1}{2}\) vào biểu thức \(A=\dfrac{-1}{x-2}\), ta được:
\(A=-1:\left(-\dfrac{1}{2}-2\right)=-1:\dfrac{-5}{2}=1\cdot\dfrac{2}{5}=\dfrac{2}{5}\)
Vậy: Khi \(\left|x\right|=\dfrac{1}{2}\) thì \(A\in\left\{\dfrac{2}{3};\dfrac{2}{5}\right\}\)
c) Để A<0 thì \(\dfrac{-1}{x-2}< 0\)
\(\Leftrightarrow x-2>0\)
hay x>2
Kết hợp ĐKXĐ, ta được: x>2
Vậy: Để A<0 thì x>2
Bài 1:
a) Ta có: \(M=\left(\dfrac{x+2}{x^2+2x+1}+\dfrac{x-2}{1-x^2}\right)\cdot\dfrac{x+1}{x}\)
\(=\left(\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x+1\right)^2\cdot\left(x-1\right)}-\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)^2\cdot\left(x-1\right)}\right)\cdot\dfrac{x+1}{x}\)
\(=\dfrac{x^2-x+2x-2-\left(x^2+x-2x-2\right)}{\left(x+1\right)^2\cdot\left(x-1\right)}\cdot\dfrac{x+1}{x}\)
\(=\dfrac{x^2+x-2-x^2+x+2}{\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x}\)
\(=\dfrac{2x}{\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x}\)
\(=\dfrac{2}{x^2-1}\)
Bài 2:
1: Ta có: \(\left(x-5\right)^2+\left(x+3\right)^2=2\left(x-4\right)\left(x+4\right)-5x+7\)
\(\Leftrightarrow x^2-10x+25+x^2+6x+9=2\left(x^2-16\right)-5x+7\)
\(\Leftrightarrow2x^2-4x+34=2x^2-32-5x+7\)
\(\Leftrightarrow2x^2-4x+34-2x^2+5x+25=0\)
\(\Leftrightarrow x+59=0\)
hay x=-59
Vậy: S={-59}
Bài 1:
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=3\end{matrix}\right.\)
1: \(\Leftrightarrow x-2-7x+7=-1\)
=>-6x+5=-1
hay x=1(loại)
3: \(\Leftrightarrow\left(x+2\right)\left(x-1\right)-\left(x+1\right)\left(x+3\right)=4\)
\(\Leftrightarrow x^2+x-2-x^2-4x-3=4\)
=>-3x=9
hay x=-3(loại)
4: \(\Leftrightarrow x^2+2x+1-x^2+2x-1=3x\cdot\dfrac{x+1-x+1}{x+1}\)
\(\Leftrightarrow4x=\dfrac{6x}{x+1}\)
\(\Leftrightarrow4x^2+4x-6x=0\)
\(\Leftrightarrow4x^2-2x=0\)
=>2x(2x-1)=0
hay \(x\in\left\{0;\dfrac{1}{2}\right\}\)
Bài 1:
b) Ta có: \(\dfrac{x-12}{77}+\dfrac{x-11}{78}=\dfrac{x-74}{15}+\dfrac{x-73}{16}\)
\(\Leftrightarrow\dfrac{x-12}{77}-1+\dfrac{x-11}{78}-1=\dfrac{x-74}{15}-1+\dfrac{x-73}{16}-1\)
\(\Leftrightarrow\dfrac{x-89}{77}+\dfrac{x-89}{78}-\dfrac{x-89}{15}-\dfrac{x-89}{16}=0\)
\(\Leftrightarrow\left(x-89\right)\left(\dfrac{1}{77}+\dfrac{1}{78}-\dfrac{1}{15}-\dfrac{1}{16}\right)=0\)
mà \(\dfrac{1}{77}+\dfrac{1}{78}-\dfrac{1}{15}-\dfrac{1}{16}\ne0\)
nên x-89=0
hay x=89
Vậy: S={89}
Bài 1:
a)ĐKXĐ: \(x\notin\left\{3;-1\right\}\)
Ta có: \(\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2x+2}=\dfrac{2x}{\left(x-3\right)\left(x+1\right)}\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{4x}{2\left(x-3\right)\left(x+1\right)}\)
Suy ra: \(x^2+x+x^2-3x-4x=0\)
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow x\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhân\right)\\x=6\left(nhận\right)\end{matrix}\right.\)
Vậy: S={0;6}
Bài 2:
Ta có: \(3n^3+10n^2-5⋮3n+1\)
\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;-3;3\right\}\)
hay \(n\in\left\{0;-1;1\right\}\)
14:
a: Sxq=(2+1,5)*2*1,2=2,4*3,5=8,4m2
V=2*1,5*1,2=2*1,8=3,6m3
b: Bể chứa được tối đa là: 3,6*1000=3600 lít