K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét tứ giác BCDE có \(\widehat{BDC}=\widehat{BEC}=90^0\)

nên BCDE là tứ giác nội tiếp

2: Xét ΔKEB vuông tại E và ΔKDC vuông tại D có

góc EKB=góc DKC

Do đó: ΔEKB\(\sim\)ΔDKC

Suy ra: KE/KD=KB/KC

hay \(KE\cdot KC=KB\cdot KD\)

1 tháng 3 2019

Giải: 
Câu a) 
- 2 tam giác vuông ∆ADC và ∆BEC, có góc ADC = góc BEC = 90°, và 2 tam giác vuông này có chung góc C. Từ đây, suy ra => tam giác ∆ADC và tam giác ∆BEC đồng dạng (theo dạng tam giác đồng dạng: góc - góc - góc). Vì ∆ADC và ∆BEC đồng dạng nhau, nên ta có tỷ lệ: DC:EC = AC:BC. 
Từ đây, suy ra: DC:AC = CE:BC (1). 
Vì tam giác ∆ABC và ∆EDC có chung góc C, và vì kết quả ở (1), nên ta suy ra: ∆ABC và ∆EDC đồng dạng. Từ đây, ta biết được: góc DEC = ABC và góc EDC = góc BAC. 
Mà, góc AED + góc DEC = 180° => góc AED + góc ABC = 180° => tứ giác ABDE nội tiếp được một đường tròn (Theo tính chất của tứ giác nội tiếp: 2 góc đối bù nhau). 

Câu b) 
Chứng minh tương tự như câu a), ta sẽ có: 
∆DEC đồng dạng ∆DBF đồng dạng ∆AEF (1) 
Từ (1), ta suy ra: góc AEF = góc DEC, mà góc BEA = góc BEC = 90°, nên ta tính được góc BEF = góc BED, suy ra => BE là đường phân giác góc DEF. 
Giải tương tự như trên, ta sẽ chứng minh được AD, CF lần lượt là đường phân giác của các góc FDE và góc DFE. 
Từ đó, suy ra => H là tâm đường tròn nội tiếp tam giác DEF.