Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9
= 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/9
=1-1/9
=8/9
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
= \(1-\frac{1}{9}\)
= \(\frac{8}{9}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)
\(B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
\(A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{9}\right)\)
\(A=1-\frac{1}{9}=\frac{8}{9}\)
A=\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
=1\(-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
=1-\(\frac{1}{9}=\frac{8}{9}\)
Vậy A=\(\frac{8}{9}\)
\(A=\frac{\left(23\frac{11}{15}-26\frac{13}{20}\right)}{12^2+5^2}\cdot\frac{1-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}}{3^2.13.2-13.5}-\frac{19}{37}\)
\(A=\frac{\left(23+\frac{11}{15}-26+\frac{13}{20}\right)}{144+25}\cdot\frac{1-\frac{1}{5.6}-\frac{1}{6.7}-\frac{1}{7.8}}{9.13.2-13.5}-\frac{19}{37}\)
\(A=\frac{\left(23+26+\frac{11}{15}-\frac{13}{20}\right)}{169}\cdot\frac{1-\left(\frac{1}{5}-\frac{1}{6}\right)-\left(\frac{1}{6}-\frac{1}{7}\right)-\left(\frac{1}{7}-\frac{1}{8}\right)}{13.\left(9.2-5\right)}-\frac{19}{37}\)
\(A=\frac{49+\frac{44}{60}-\frac{39}{60}}{169}\cdot\frac{1-\frac{1}{5}+\frac{1}{6}-\frac{1}{6}+\frac{1}{7}-\frac{1}{7}+\frac{1}{8}}{13.13}-\frac{19}{37}\)
\(A=\frac{49+\frac{1}{20}}{169}\cdot\frac{1-\frac{1}{5}+\frac{1}{8}}{169}-\frac{19}{37}\)
\(A=\frac{49\frac{1}{20}}{169}\cdot\frac{\frac{4}{5}+\frac{5}{40}}{169}-\frac{19}{37}\)
\(A=\frac{981}{169}\cdot\frac{\frac{32}{40}+\frac{5}{40}}{169}-\frac{19}{37}\)
\(A=\frac{981}{169}\cdot\frac{\frac{37}{40}}{169}-\frac{19}{37}\)
\(A=\frac{981.\frac{37}{40}}{169^2}-\frac{19}{37}\)
\(A=\frac{\frac{36297}{40}}{28561}-\frac{19}{37}\)
\(A=\frac{907,425}{28561}-\frac{19}{37}\)
\(A=\frac{33574,725}{1056757}-\frac{542659}{1056757}\)
\(A=\frac{-509084,275}{1056757}=-0,04604282...\)
Mik chỉ làm đc thế này thôi, ôn thi học kì II tốt nha bạn!
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{72}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{2}-\frac{1}{9}=\frac{9}{18}-\frac{2}{18}=\frac{7}{18}\)
dễ mà phân tích các mẫu ra là các tích của 2 số gần liên tiếp rồi áp dụng phân số ai cập thui
Đề thiếu?
\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{9900}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\)
\(=\frac{6}{25}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(A=\frac{1}{2}-\frac{1}{8}\)
\(A=\frac{3}{8}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(A=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
mình nhé!