K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2019

a) Hai tam giác vuông AHD và BDC có ∠ADH = ∠CBD (SLT)

⇒ ΔAHD ∼ ΔDCB (g.g)

b) Ta có S, R là trung điểm của HB và AH nên SR là đường trung bình của ΔABH ⇒ SR // AB

⇒ ∠HSR = ∠HBA (đồng vị)

Mà ∠HBA = ∠D1

⇒ HSR = ∠D1

Do đó ΔSHR ∼ ΔDCB (g.g)

c) Ta có SR // AB và SR = AB/2 (cmt), TD = CD/2

mà AB = CD và AB // CD (gt)

⇒ SR // DT và SR = DT

Do đó Tứ giác DRST là hình bình hành

d) Ta có SR // AB mà AB ⊥ AD (gt) ⇒ SR ⊥ AD, lại có AH ⊥ SD (gt)

⇒ R là trực tâm của ΔSAD ⇒ DR là đường cao thứ ba nên DR ⊥ SA

Mà DR // ST (DRST là hình bình hành) ⇒ ST ⊥ SA

Vậy ∠AST = 90o

Mong mn giúp mk làm phần in đậm , mk cần gấp ạ. Xin cảm ơn!!!Bài 1 Cho tam giác ABC, trung tuyến AD, biết AB = 4cm, AC = 8cm. Qua B dựng đường thắng cắt AC tại F sao cho góc ABF bằng góc ACB. a) Chứng tỏ tam giác ABF và tam giác ACB đồng dạng. Tính độ dài đoạn CFb) Chứng tỏ diện tích tam giác ABC bằng hai lần diện tích tam giác ADCc) Gọi 0 là giao điểm của BF và AD, CO cắt AB tại E. Từ A và C lần lượt...
Đọc tiếp

Mong mn giúp mk làm phần in đậm , mk cần gấp ạ. Xin cảm ơn!!!

Bài 1 Cho tam giác ABC, trung tuyến AD, biết AB = 4cm, AC = 8cm. Qua B dựng đường thắng cắt AC tại F sao cho góc ABF bằng góc ACB. 

a) Chứng tỏ tam giác ABF và tam giác ACB đồng dạng. Tính độ dài đoạn CF

b) Chứng tỏ diện tích tam giác ABC bằng hai lần diện tích tam giác ADC

c) Gọi 0 là giao điểm của BF và AD, CO cắt AB tại E. Từ A và C lần lượt dựng các đường | thẳng song song với BF cắt CO tại J và cắt AD tại I.

 + Chứng tỏ FC/FA  = CI/JA

 + Chứng tỏ DB/DC  = FC/FA = EA/EB=1

 Bài 2: Cho hình chữ nhật ABCD, kẻ AH vuông góc với đường chéo BD

 a) Chứng minh tam giác AHD và tam giác DCB đồng dạng và BC.BC = DH.DB

 b) Gọi S là trung điểm của BH, R là trung điểm của AH. 

Chứng minh SH.BD = SR.DC 

c) Gọi T là trung điểm của DC. Chứng minh tứ giác DRST là hình bình hành

d) Tính góc AST

 

 

2
8 tháng 4 2020

câu 2d

 Ta có SR // AB mà AB ⊥ AD (gt) ⇒ SR ⊥ AD, lại có AH ⊥ SD (gt)

⇒ R là trực tâm của ΔSAD ⇒ DR là đường cao thứ ba nên DR ⊥ SA

Mà DR // ST (DRST là hình bình hành) ⇒ ST ⊥ SA

Vậy ∠AST = 90o

...

Chúc bạn học tốt 

8 tháng 4 2020

câu 1d

+ ΔACI có BF//CI→ FC/FA=OI/AO

IΔCOI có AJ//CI (//BF)→  CI/AJ=OI/AO

→FC/FA=CI/AJ

a: Xet ΔAHD vuông tại H và ΔDCB vuông tại C có

góc ADH=góc DBC

=>ΔAHD đồng dạng vơi ΔDCB

c: Xét ΔHAB có HN/HA=HM/HB

nên MN//AB

=>MN vuông góc AD

mà AH vuông góc DM

và AH cắt MN tại N

nên N là trực tâm

=>ND vuông góc AM

=>ME vuông góc AM

27 tháng 10 2021

a: Xét ΔHAB có 

N là trung điểm của HB

M là trung điểm của HA

Do đó: NM là đường trung bình của ΔAHB

Suy ra: \(NM=\dfrac{AB}{2}=2\left(cm\right)\)

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Lời giải:

a) Xét tam giác $ADH$ và $BDA$ có:

$\widehat{AHD}=\widehat{BAD}=90^0$

$\widehat{D}$ chung

$\Rightarrow \triangle ADH\sim \triangle BDA$ (g.g)

$\Rightarrow \frac{AD}{BD}=\frac{DH}{DA}\Rightarrow DA^2=BD.DH$ (đpcm)

b) Xét tam giác $AHD$ và $ABC$ có:

$\widehat{AHD}=\widehat{ABC}=90^0$

$\widehat{ADH}=\widehat{ADB}=\widehat{ACB}$ (tính chất hcn)

$\Rightarrow \triangle AHD\sim \triangle ABC$ (g.g)

c) 

Xét tam giác $MAD$ và $NAC$ có:

$\widehat{ADM}=\widehat{ADB}=\widehat{ACB}=\widehat{ACN}$

$\frac{AD}{AC}=\frac{HD}{BC}=\frac{HD:2}{BC:2}=\frac{MD}{NC}$ (do tam giác đồng dạng phần b)

$\Rightarrow \triangle MAD\sim \triangle NAC$ (c.g.c)

$\Rightarrow \widehat{MAD}=\widehat{NAC}$

d)

Tam giác đồng dạng phần b cho ta $\widehat{DAH}=\widehat{CAB}$

Tam giác đồng dạng phần c cho ta $\widehat{DAM}=\widehat{CAN}$ 

$\Rightarrow \widehat{DAH}-\widehat{DAM}=\widehat{CAB}-\widehat{CAN}$

hay $\widehat{MAH}=\widehat{NAB}$

$\Rightarrow \widehat{MAN}=\widehat{HAB}$ 

Xét tam giác $AHB$ và $AMN$ có:

$\widehat{HAB}=\widehat{MAN}$

$\frac{AM}{AN}=\frac{AD}{AC}=\frac{AD}{BD}=\frac{AH}{AB}$ (từ tam giác đồng dạng phần c và a)

$\Rightarrow \triangle AHB\sim \triangle AMN$ (c.g.c)

$\Rightarrow \widehat{AMN}=\widehat{AHB}=90^0$ 

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Hình vẽ:

undefined