K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Lời giải:

$y'=x^2+2mx+(m^2-4)=0$

Để hàm số đạt cực đại tại $x=1$ thì trước tiên, $y'=0$ tại $x=1$

$\Leftrightarrow 1+2m+m^2-4=0$

$\Leftrightarrow m^2+2m-3=0$

$\Leftrightarrow m=1$ hoặc $m=-3$

$f''(x)=2x+2m$.

Với $m=1$ thì $f''(1)=4>0$, trong khi đó với $m=-3$ thì $f''(1)=-4<0$

Do đó hàm đạt cực đại tại $x=1$ khi $m=-3$

Đáp án D

 

18 tháng 9 2021

Mấy câu này thuộc bài đồng biến nghịch biến nha!!!! 

18 tháng 9 2021

Câu này ý D á bạn

bạn tính đạo hàm của f'(3-x2) ra á xong cho bằng k rồi cho các nghiệm đan dấu rồi xét 

NV
29 tháng 6 2021

- Tiệm cận đứng của đồ thị là 1 giá trị âm nên loại A và B

- Hàm đồng biến trên các khoảng xác định nên loại C

Vậy D là đáp án đúng

NV
1 tháng 11 2021

\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)

\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)

\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)

Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)

\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)

\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)

\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)

\(\Leftrightarrow x_2-x_1=2\)

Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)

\(\Rightarrow c=2\)

Có 1 giá trị nguyên

NV
23 tháng 4 2021

Xét \(I_1=2\int\limits^{\dfrac{\pi}{2}}_0f\left(sinx\right)cosxdx=2\int\limits^{\dfrac{\pi}{2}}_0f\left(sinx\right)d\left(sinx\right)\)

Đặt \(sinx=t\Rightarrow t\in\left[0;1\right]\Rightarrow f\left(t\right)=5-t\)

\(I_1=2\int\limits^1_0\left(5-t\right)dt=9\)

Xết \(I_2=3\int\limits^1_0f\left(3-2x\right)dx=-\dfrac{3}{2}\int\limits^1_0f\left(3-2x\right)d\left(3-2x\right)\)

Đặt \(3-2x=t\Rightarrow t\in\left[1;3\right]\Rightarrow f\left(t\right)=t^2+3\)

\(I_2=-\dfrac{3}{2}\int\limits^1_3\left(t^2+3\right)dt=\dfrac{3}{2}\int\limits^3_1\left(t^2+3\right)dt=22\)

\(\Rightarrow I=9+22=31\)

6 tháng 5 2021

Câu 35 Diện tích tam giác ABC là \(\dfrac{1}{2}\).AB.AC=\(\dfrac{1}{2}\).a\(^2\)

thể tích lăng trụ ABC.A'B'C'=a\(\sqrt{3}\).\(\dfrac{1}{2}\)a\(^2\)=a\(^3\)\(\dfrac{\sqrt{3}}{2}\)

Câu 36 Gọi O là giao điểm của AC và DB

AC=\(\sqrt{2}\)a => AO=\(\dfrac{\sqrt{2}}{2}\)a
Mà góc SAC=45 => SO=AO=\(\dfrac{\sqrt{2}}{2}\)a

thể tích khối chóp S.ABCD = \(\dfrac{1}{3}\).\(\dfrac{\sqrt{2}}{2}\)a.a\(^2\)=\(\dfrac{\sqrt{2}}{6}\)a\(^3\)

Câu 37 \(\dfrac{Vs.A'B'C'}{Vs.ABC}\)=\(\dfrac{SA'}{SA}\).\(\dfrac{SB'}{SB}\).\(\dfrac{SC'}{SC}\)=\(\dfrac{1}{8}\) 

tương tự \(\dfrac{Vs.D'B'C'}{Vs.DBC}\)=\(\dfrac{1}{8}\)=> \(\dfrac{Vs.A'B'C'D'}{Vs.ABCD}\)=\(\dfrac{1}{8}\)