Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAH vuông tại A và ΔBDH vuông tại D có
BH chung
\(\widehat{ABH}=\widehat{DBH}\)
Do đó: ΔBAH=ΔBDH
1. Xét ΔAIE và ΔAIF có:
Chung AI
\(\widehat{EAI}=\widehat{FAI}\)(gt)
\(AE=AF\)(gt)
⇒ΔAIE = ΔAIF (c.g.c)
2. Xét ΔABC có: \(\widehat{BAC}+\widehat{B}+\widehat{BCA}=180^o\\ \Rightarrow\widehat{BAC}+\widehat{BCA}=120^o\\ \Rightarrow2\widehat{ICA}+2\widehat{IAC}=120^o\\ \Rightarrow\widehat{ICA}+\widehat{IAC}=60^o\)
Xét ΔAIC có: \(\widehat{ICA}+\widehat{IAC}+\widehat{AIC}=180^o\\ \Rightarrow\widehat{AIC}=120^o\)
\(\Rightarrow\widehat{EID}=\widehat{AIC}=120^o\) (2 góc đối đỉnh)
Ta có: \(\widehat{AIE}+\widehat{EID}=180^o\\ \Rightarrow\widehat{AIE}=60^o\)
3. ΔAIE = ΔAIF(cma)
\(\Rightarrow\widehat{AIE}=\widehat{AIF}=60^o\) (2 góc tương ứng)
\(\widehat{AIE}=\widehat{CIF}=60^o\) (2 góc đối đỉnh)
Xét ΔCID và ΔCIF có:
\(\widehat{CID}=\widehat{CIF}\left(=60^o\right)\)
Chung CI
\(\widehat{ICD}=\widehat{ICF}\)(gt)
⇒ΔCID = ΔCIF(g.c.g)
⇒ID=IF (2 cạnh tương ứng)
Mà \(IE=IF\)(cmb) \(\Rightarrow IE=ID\)
a, Vì tam giác ABC cân tại A nên \(\widehat{NBM}=\widehat{ACB}\)
Mà \(\widehat{ACB}=\widehat{PCQ}\left(đối.đỉnh\right)\Rightarrow\widehat{NBM}=\widehat{PCQ}\)
Mà \(\widehat{NMB}=\widehat{CPQ}=90^0;BM=PC\)
Do đó \(\Delta BMN=\Delta CPQ\left(g.c.g\right)\)
b, Vì \(BM//PQ\left(\perp BP\right)\) nên \(\widehat{MNI}=\widehat{IQP}\)
Mà \(\widehat{NMI}=\widehat{IPQ}=90^0;MN=PQ\left(\Delta BMN=\Delta CPQ\right)\)
Do đó \(\Delta IMN=\Delta IPQ\left(g.c.g\right)\)
\(\Rightarrow IN=IQ\)
c, Vì IK là đường cao cũng là trung tuyến tam giác KNQ nên tam giác KNQ cân tại K
Mặt đường nhựa nóng, không khí tại gần mặt đất có nhiệt độ cao hơn không khí trên cao, dẫn đến chiết suất không khí tăng theo độ cao, các tia sáng từ bầu trời xanh có thể được khúc xạ toàn phần đến mắt người quan sát. Do không khí luôn có các dòng đối lưu gây nhiễu loạn chiết suất, hình ảnh thu được luôn dao động như khi nhìn hình ảnh bầu trời phản xạ từ mặt nước vậy nên ta có thể nhìn như thấy vũng nước trên đường .
a: Xét ΔBAH vuông tại A và ΔBDH vuông tại D có
BH chung
\(\widehat{ABH}=\widehat{DBH}\)
Do đó: ΔBAH=ΔBDH
a/ Xét tg vuông ABE và tg vuông PBE có
BE chung
\(\widehat{ABE}=\widehat{PBE}\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta PBE\) (cạnh huyền và góc nhọn tương ứng bằng nhau)
b/ Xét tg ABI và tg PBI có
\(\Delta ABE=\Delta PBE\Rightarrow BA=BP\)
BI chung
\(\widehat{ABI}=\widehat{PBI}\left(gt\right)\)
\(\Rightarrow\Delta ABI=\Delta PBI\left(c.g.c\right)\Rightarrow AI=IP\) (1)
Xét tg vuông ACF và tg vuông QCF có
CF chung
\(\widehat{ACF}=\widehat{QCF}\left(gt\right)\)
\(\Rightarrow\Delta ACF=\Delta QCF\) (cạnh huyền và góc nhọn tương ứng bằng nhau)
Xét tg ACI và tg QCI có
\(\Delta ACF=\Delta QCF\Rightarrow AC=QC\)
CI chung
\(\widehat{ACI}=\widehat{QCI}\left(gt\right)\)
\(\Rightarrow\Delta ACI=\Delta QCI\left(c.g.c\right)\Rightarrow AI=IQ\) (2)
Từ (1) và (2) \(\Rightarrow AI=IP=IQ\)
c/
Xét tg QIP có
IQ=IP => tg QIP cân ở I
Mà \(ID\perp BC\)
\(\Rightarrow DQ=DP\) (Trong tg cân đường cao xuất phát từ đỉnh đồng thời là đường trung tuyến)
=> D là trung điểm của PQ
\(2,\\ a,A=-\dfrac{8}{15}\cdot\dfrac{5}{4}+\left(\dfrac{53}{10}-\dfrac{23}{6}\right):\dfrac{4}{9}\\ A=-\dfrac{2}{3}+\dfrac{22}{15}\cdot\dfrac{9}{4}=\dfrac{33}{10}-\dfrac{2}{3}=\dfrac{79}{30}\\ b,B=4\cdot\dfrac{1}{8}+\dfrac{1}{6}+\dfrac{1}{4}:\dfrac{1}{4}+1\\ B=\dfrac{1}{2}+\dfrac{1}{6}+1+1=\dfrac{2}{3}+1+1=\dfrac{8}{3}\)
\(3,\)
\(a,\)Áp dụng t/c dtsbn:
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{2b}{10}=\dfrac{a-b+c}{4}=\dfrac{a-2b+c}{-1}\\ \Rightarrow\dfrac{a-b+c}{a-2b+c}=\dfrac{4}{-1}=-4\)
\(b,\dfrac{x-1}{5}=\dfrac{y-2}{3}=\dfrac{z-2}{2}=\dfrac{3x-3}{15}=\dfrac{5y-10}{15}=\dfrac{6z-12}{12}\)
Áp dụng t/c dtsbn:
\(\dfrac{x-1}{5}=\dfrac{y-2}{3}=\dfrac{z-2}{2}=\dfrac{3x-3}{15}=\dfrac{5y-10}{15}=\dfrac{6z-12}{12}\\ =\dfrac{3x-3-5y+10+6z-12}{15-15+12}=\dfrac{\left(3x-5y+6x\right)-3+10-12}{12}=\dfrac{4}{12}=3\\ \Rightarrow\left\{{}\begin{matrix}x-1=15\\y-2=9\\z-2=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=16\\y=11\\z=8\end{matrix}\right.\)
có thấy đâu bạn ơi