Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{x+2017-\left(2015-x\right)}{\sqrt[3]{\left(x+2017\right)^2}+\sqrt[3]{\left(x+2017\right)\left(2015-x\right)}+\sqrt[3]{\left(2015-x\right)^2}}}{\dfrac{2000+x-\left(1998-x\right)}{\sqrt{2000+x}+\sqrt{1998-x}}}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{2000+x}+\sqrt{1998-x}}{\sqrt[3]{\left(x+2017\right)^2}+\sqrt[3]{\left(x+2017\right)\left(2015-x\right)}+\sqrt[3]{\left(2015-x\right)^2}}\)
\(=\dfrac{\sqrt{1999}+\sqrt{1999}}{\sqrt[3]{2016^2}+\sqrt[3]{2016^2}+\sqrt[3]{2016^2}}=\dfrac{2\sqrt{1999}}{3.24\sqrt[3]{294}}=\dfrac{\sqrt{1999}}{36\sqrt[3]{294}}\)
\(\Rightarrow a+b=1999+294\)
1.
\(\lim\left(3-5n-7n^2\right)=\lim n^2\left(\dfrac{3}{n^2}-\dfrac{5}{n}-7\right)\)
Do \(\lim n^2=+\infty\)
\(\lim\left(\dfrac{3}{n^2}-\dfrac{5}{n}-7\right)=0-0-7=-7< 0\)
\(\Rightarrow\lim n^2\left(\dfrac{3}{n^2}-\dfrac{5}{n}-7\right)=-\infty\)
2.
\(\lim\left(3n+8n^2-5\right)=\lim n^2\left(\dfrac{3}{n}+8-\dfrac{5}{n^2}\right)\)
Do \(\lim n^2=+\infty\)
\(\lim\left(\dfrac{3}{n}+8-\dfrac{5}{n^2}\right)=0+8-0=8>0\)
\(\Rightarrow\lim n^2\left(\dfrac{3}{n}+8-\dfrac{5}{n^2}\right)=+\infty\)
3.
\(\lim\left(4-\dfrac{1}{n^5}+\dfrac{7}{n^3}\right)=4-0+0=4\)