K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2019

O x x' y n y' m 1 2 3

Giả sử: \(\widehat{xOy}\) và \(\widehat{x'Oy'}\)là 2 góc đối đỉnh

            Om là tia phân giác của \(\widehat{xOy}\)

           On là tia phân giác của  \(\widehat{x'Oy'}\)

C/m On và Om là 2 tia đối nahu

Vì \(\widehat{xOy}=\widehat{x'Oy'}\)( 2 góc đối đỉnh )

Mà \(\widehat{O_1}=\frac{1}{2}\widehat{xOy}\)(  Om là tia phân giác của \(\widehat{xOy}\))

      \(\widehat{O_3}=\frac{1}{2}\widehat{x'Oy'}\)( On là tia phân giác của  \(\widehat{x'Oy'}\))

\(\Rightarrow\widehat{O_1}=\widehat{O_3}=\frac{1}{2}\widehat{xOy}\)

\(\Rightarrow\widehat{O_1}+\widehat{O_3}=\widehat{xOy}\)

Ta có: \(\widehat{xOy}+\widehat{O_2}=180^o\)( 2 góc kề bù )

Mà \(\widehat{O_1}+\widehat{O_2}+\widehat{O_3}=\widehat{mOn}\)

=> \(\widehat{mOn}=180^o\)

=> Om và On là 2 tia đối nhau

4 tháng 9 2016

 

Hỏi đáp ToánGiả sử 2 góc đối đỉnh đó là xOm và yOn

Ot là phân giác của góc xOm. Ot' là tia đối của tia Ot. cần chứng minh: Ot' là phân giác của góc yOn

Vì Ot; Ot' là 2 tia đối nhau; Ox; Oy là 2 tia đối nhau ; Om; On đối nhau

=> góc xOt = góc yOt' ; góc tOm = góc t'On ﴾ đối đỉnh﴿

Mà góc xOt = góc tOm ﴾do Ot là p/g của góc xOm﴿

=> góc yOt' = góc t'On ; Ot' nằm giữa 2 tia Oy và On

=> Ot' là p/g của góc yOn 

25 tháng 8 2015

:  xét các tia x'ox và y'oy, có hai góc đối đỉnh là xoy và x'oy' 
gọi ot và ot' là hai tia phân giác tương ứng 

Thấy: góc xoy = góc x'oy' 
=> góc yot = góc y'ot' 

ta có: góc xoy + góc xoy' = góc toy' + góc yot = 180o 

<=> góc toy' + góc y'ot' = góc tot' = 180o 

=> ot và ot' là hài tia đối nhau

25 tháng 8 2015

cho mik lik-e đi Tạ Minh Ngọc

25 tháng 8 2015

Giả sử 2 dường thẳng xx' và yy' cắt nhau tại O 
Kẻ Ot là tia fg góc xOy 
và Ot' là tia fg góc x'Oy'. Ta phải chứng minh Ot và Ot' cùng nằm trên 1 đường thẳng hay tOt'=180o 
tOt'=tOx+xOt' (tia Ox nằm giữa 2 tia Ot,Ot') 
mà tOx=x'Ot' (cùng =1/2 hai góc đối đỉnh) 
nên tOt'=x'Ot'+t'Ox=xOx'=180o (tia Ot' nằm giữa 2 tia Ox,Ox') 
vậy Ot và Ot'là 2 tia đối nhau 

9 tháng 9 2016

A B C D O E F

Ta có : 

\(\widehat{AOD}\) và \(\widehat{BOC}\)

Kẻ OE là tia p/giác của \(\widehat{BOC}\)

=) \(\widehat{BOE}=\widehat{EOC}\) 

Kẻ OF là tia p/g của \(\widehat{AOD}\)

=) \(\widehat{AOF}=\widehat{OFD}\)

mà \(\widehat{AOD}=\widehat{BOC}\)

=) tia đối của OE là OF cx là tia p/giác của góc đối đỉnh của góc \(\widehat{BOC}\)

16 tháng 9 2020

là xOm và yOn

Ot là phân giác của góc xOm. Ot' là tia đối của tia Ot. cần chứng minh: Ot' là phân giác của góc yOn

Vì Ot; Ot' là 2 tia đối nhau; Ox; Oy là 2 tia đối nhau ; Om; On đối nhau

=> góc xOt = góc yOt' ; góc tOm = góc t'On ﴾ đối đỉnh﴿

Mà góc xOt = góc tOm ﴾do Ot là p/g của góc xOm﴿

=> góc yOt' = góc t'On ; Ot' nằm giữa 2 tia Oy và On

=> Ot' là p/g của góc yOn

16 tháng 9 2020

Ta có : 

AODˆAOD^ và BOCˆBOC^

Kẻ OE là tia p/giác của BOCˆBOC^

=) BOEˆ=EOCˆBOE^=EOC^ 

Kẻ OF là tia p/g của AODˆAOD^

=) AOFˆ=OFDˆAOF^=OFD^

mà AODˆ=BOCˆAOD^=BOC^

=) tia đối của OE là OF cx là tia p/giác của góc đối đỉnh của góc BOCˆ

9 tháng 9 2016

x x' y y' O t r'

Giả sử: Vẽ hai đường thẳng xx' và b cắt nhau tại xx'.

Kẻ Ot là tia phân giác \(\widehat{xx'}\)

Và tia Ot' là tia phân giác \(\widehat{yy'}\)

\(\Rightarrow Ox\) nằm giữa \(Ot,Oy\)

Như vậy áp dụng tính chất có:

\(\widehat{tOt'}=\widehat{tOx}+\widehat{xOt'}\)

Mà: \(\widehat{tOx}=\widehat{x'Ot'}\) (\(=\frac{1}{2}\) của hai góc đối đỉnh)

Lại có: Ot' nẵm giữa hai tia Ox và Ox'

 \(\widehat{tOt'}=\widehat{x'Ot'}+\widehat{t'Ox}=\widehat{xOx'}=180^o\) (hai tia đối tạo thành góc có số đó 180 độ)

Vậy: Ot và Ot' đối nhau (đpcm)