Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(\dfrac{2}{9}+\dfrac{-3}{4}+\dfrac{5}{30}\)
\(=\dfrac{2.20}{9.20}+\dfrac{-3.45}{4.45}+\dfrac{5.6}{30.6}\)
\(=\dfrac{40}{180}+\dfrac{-135}{180}+\dfrac{30}{180}\)
\(=\dfrac{40+\left(-135\right)+30}{180}\)
\(=\dfrac{-65}{180}\)
\(=\dfrac{-13}{36}\)
2)\(\dfrac{-7}{12}-\dfrac{11}{18}\)
\(=\dfrac{-7.3}{12.3}-\dfrac{11.2}{18.2}\)
\(=\dfrac{-21}{36}-\dfrac{22}{36}\)
\(=\dfrac{-21-22}{36}\)
\(=\dfrac{-43}{36}\)
3)\(\dfrac{7}{8}-\dfrac{-5}{16}\)
\(=\dfrac{7.2}{8.2}-\dfrac{-5}{16}\)
\(=\dfrac{14}{16}-\dfrac{-5}{16}\)
\(=\dfrac{14-\left(-5\right)}{16}\)
\(=\dfrac{19}{16}\)
4)\(\dfrac{3}{8}-\dfrac{-9}{10}-\dfrac{5}{16}\)
\(=\dfrac{3.10}{8.10}-\dfrac{-9.8}{10.8}-\dfrac{5.5}{16.5}\)
\(=\dfrac{30}{80}-\dfrac{-72}{80}-\dfrac{25}{80}\)
\(=\dfrac{30-\left(-72\right)-25}{80}\)
\(=\dfrac{77}{80}\)
a) \(-\left(76-35+15\right)+\left[18-27+\left(-17\right)\right]\)
\(=-76+35+15+18-27-17\)
\(=-52\)
b) \(167+\left[127-235-\left(-16\right)\right]+\left(-67\right)\)
\(=167+127-235+16-67\)
\(=8\)
c) \(\left(-19\right)+165-\left[27+\left(-21\right)-\left(+72\right)\right]\)
\(=\left(-19\right)+165-27+21+72\)
\(=212\)
d) \(89.\left(-2\right)+\left[20+\left(-2\right).\left(-5\right)-85\right]\)
\(=\left(-178\right)+\left(20+10-85\right)\)
\(=\left(-178\right)+20+10-85\)
\(=-233\)
B16:
Biểu thức C là tích của 100 phân số nhỏ hơn 1 , trong đó các tử đều lẽ , các mẫu đều chẵn . Ta đưa ra biểu thức trung gian là một tích các phân số mà tử số các phân số đều chẵn và mẫu số các phân số đều lẽ . Thêm 1 vào tử và mẫu của mỗi phân số của A , giá trị mỗi phân số tăng lên , do đó:
ta có:
\(A< \dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}.....\dfrac{199}{200}\left(1\right)\)
\(A< \dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}....\dfrac{200}{201}\left(2\right)\)
Nhân (1) vs (2) theo từng vế ta được:
\(A^2< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}.....\dfrac{199}{200}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}....\dfrac{200}{201}\right)\)
Vế phải của bđt trên bằng \(\dfrac{1}{201}\)
Vậy \(A^2< \dfrac{1}{201}\left(đpcm\right)\)
15.
\(A=\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^7}\)
\(4A=1+\dfrac{1}{4}+...+\dfrac{1}{4^6}\)
\(\Rightarrow4A-A=1-\dfrac{1}{4^7}\)
\(\Rightarrow3A=1-\dfrac{1}{4^7}\)
\(\Rightarrow A=\dfrac{1}{3}\left(1-\dfrac{1}{4^7}\right)\)
\(B=\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{2499}{2500}=\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}...\dfrac{49.51}{50^2}\)
\(B=\dfrac{2.3...49}{3.4...50}.\dfrac{4.5...51}{3.4...50}=\dfrac{2}{50}.\dfrac{51}{3}=\dfrac{17}{25}\)