Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
a. 3x(12x - 4) - 9x(4x - 3) = 30
<=> 36x2 - 12x - 36x2 + 27x = 30
<=> 36x2 - 36x2 - 12x + 27x = 30
<=> 15x = 30
<=> x = 2
b. x(5 - 2x) + 2x(x - 1) = 15
<=> 5x - 2x2 + 2x2 - 2x = 15
<=> -2x2 + 2x2 + 5x - 2x = 15
<=> 3x = 15
<=> x = 5
a) x2 ( 5x3 - x - 1212)= 5x5-x3-1212x
b) ( 3xy - x2 + y ) 2323x2y= 6969x3y2- 2323x4y+ 2323x2y2
c) x2 ( 4x3 - 5xy + 2x ) ( -1212 xy )=(4x5-5x3y+2x3).(-1212xy)
= -4848x6y +6060x4y2-2424x4y
2/ Tìm x, biết
a) 3x( 12x - 4 ) - 9x (4x - 3 ) = 30
=> 36x2-12x-36x2+27x=30
=> -12x +27x=30
=> 15x = 30
=>x =2
b ) x( 5 - 2x ) + 2x ( x - 1 )= 15
=> 5x-2x2+2x2-2x=15
=> 3x=15
=>x=5
Bài 1:
a: Ta có: \(A=\left(k-4\right)\left(k^2+4k+16\right)-\left(k^3+128\right)\)
\(=k^3-64-k^3-128\)
=-192
b: Ta có: \(B=\left(2m+3n\right)\left(4m^2-6mn+9n^2\right)-\left(3m-2n\right)\left(9m^2+6mn+4n^2\right)\)
\(=8m^3+27n^3-27m^3+8n^3\)
\(=-19m^3+35n^3\)
Bài 4:
a: Ta có: \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=16\)
\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=16\)
\(\Leftrightarrow9x=9\)
hay x=1
b: ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
\(\Leftrightarrow x^3+8-x^3+2x=15\)
\(\Leftrightarrow2x=7\)
hay \(x=\dfrac{7}{2}\)
Trog những HĐT trên chắc là
bn đánh máy thiếu số mũ nhỉ??
Phải ko
1.\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x\right)^3+y^3-\left(2x\right)^3+y^3=2y^3\)
2. \(2\left(2x+1\right)\left(3x-1\right)+\left(2x+1\right)^2+\left(3x-1\right)^2\)
\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)
3. \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)
\(=\left(x-y+z+y-z\right)^2=x^2\)
4. \(\left(x-3\right)\left(x+3\right)-\left(x-3\right)^2\)
\(=\left(x-3\right)\left(x+3-x+3\right)=6\left(x-3\right)\)
5. \(\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3+2x^2-x-2-x^3+y^3=2x^2-x-2+y^3\)
6. Áp dụng các hằng đẳng thức đáng nhớ
a) \(3x\left(x-4\right)+15=3x^2\)
\(\Leftrightarrow3x^2-12x+15-3x^2=0\)
\(\Leftrightarrow-12x+15=0\)
\(\Leftrightarrow x=\frac{5}{4}\)
b) \(x^2+y^2-2x+8y+17=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+8y+16\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2=0\)
Mà \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)