K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:=>x^2-1-x=2x-1

=>x^2-x-1=2x-1

=>x^2-3x=0

=>x=0(loại) hoặc x=3(nhận)

b:=>x+2=0 hoặc 5-3x=0

=>x=-2 hoặc x=5/3

c:=>20(1-2x)+6x=9(x-5)-24

=>20-40x+6x=9x-45-24

=>-34x+20=9x-69

=>-43x=-89

=>x=89/43

d: =>x^2+4x+4-x^2-2x+3=2x^2+8x-4x-16-3

=>2x^2+4x-19=-2x+7

=>2x^2+6x-26=0

=>x^2+3x-13=0

=>\(x=\dfrac{-3\pm\sqrt{61}}{2}\)

e: =>(2x-3)(2x-3-x-1)=0

=>(2x-3)(x-4)=0

=>x=4 hoặc x=3/2

16 tháng 3 2023

\(\dfrac{x-1}{x}-\dfrac{1}{x+1}=\dfrac{2x-1}{x^2+x}\)

\(\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{x+1}=\dfrac{2x-1}{x\left(x+1\right)}\)

ĐKXĐ : \(\left\{{}\begin{matrix}x\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)

Ta có : `(x-1)/x -1/(x+1) =(2x-1)/(x(x+1))`

\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}-\dfrac{x}{x\left(x+1\right)}=\dfrac{2x-1}{x\left(x+1\right)}\)

`=> x^2 +x -x-1 -x-2x+1=0`

`<=> x^2 -3x =0`

`<=> x(x-3)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=3\end{matrix}\right.\)

__

`(x+2)(5-3x)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\5-3x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\3x=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{5}{3}\end{matrix}\right.\)

__

\(\dfrac{5\left(1-2x\right)}{3}+\dfrac{x}{2}=\dfrac{3\left(x-5\right)}{4}-2\)

\(\Leftrightarrow\dfrac{20\left(1-2x\right)}{12}+\dfrac{6x}{12}=\dfrac{9\left(x-5\right)}{12}-\dfrac{24}{12}\)

`<=> 2x- 40x + 6x = 9x - 45 -24`

`<=>  2x- 40x + 6x-9x + 45 +24=0`

`<=>-41x+69=0`

`<=>-41x=-69`

`<=> x=69/41`

16 tháng 3 2023

Cậu tách 2 câu 1 lượt mn trl nhanh hơn đó ạ

29 tháng 11 2019

Làm ngắn gọn thôi nhé :v

\(A=\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)

\(A=\frac{x^5-3x^4-3x^3+11x^2-6x}{x^5-8x^2+22x^2-24x+9}\)

\(A=\frac{x^4-3x^3-3x^2+11x-6}{x^4-8x^3+22x^2-24x+9}\)

\(A=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x-3\right)}{\left(x-1\right)\left(x-1\right)\left(x-3\right)\left(x-3\right)}\)

\(A=\frac{x+2}{x-3}\)

\(B=\frac{x}{x+2}+\frac{2}{x-2}-\frac{4x}{4-x^2}\)

\(B=\frac{-x^4-4x^3+16x+16}{-x^4+8x^2-16}\)

\(B=\frac{\left(-x-2\right)\left(x+2\right)\left(x+2\right)\left(x-2\right)}{\left(-x-2\right)\left(x-2\right)\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{x+2}{x-2}\)

\(C=\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x\left(1-x\right)}{9-x^2}\)

\(C=\frac{1+x}{3-x}-\left(\frac{1-2x}{3+x}\right)-\frac{x\left(1-x\right)}{9-x^2}\)

\(C=\frac{10x}{-x^2+9}\)

\(D=\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)

\(D=\frac{5}{2x^2+6x}-\left(\frac{4-3x^2}{x^2-9}\right)-3\)

\(D=\frac{51x^2+138x-45}{2x^4+6x^2-18x^2-54x}\)

\(D=\frac{3\left(17x-5\right)\left(x+3\right)}{2x\left(x+3\right)\left(x+3\right)\left(x-2\right)}\)

\(D=\frac{51x-15}{2x^3-18x}\)

\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)

\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\left(\frac{3x-2}{x^2+2x+1}\right)\)

\(E=\frac{10x^4-10}{x^6-3x^4+3x^2-1}\)

\(E=\frac{10\left(x^2+1\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x+1\right)\left(x+1\right)\left(x-1\right)\left(x-1\right)\left(x-1\right)}\)

\(E=\frac{10x^2+10}{x^4-2x+1}\)

22 tháng 4 2020

d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0

Đặt x2 + 4x + 8 = t ta được:

t2 + 3xt + 2x2 = 0

\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0

\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0

\(\Leftrightarrow\) (t + x)(t + 2x) = 0

Thay t = x2 + 4x + 8 ta được:

(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0

\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0

\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0

\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0

Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x

\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)

Vậy S = {-4; -2}

Mình giúp bn phần khó thôi!

Chúc bn học tốt!!

22 tháng 4 2020

c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)

\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

⇒x2+x+1+2x2-5=4x-4

⇔3x2-3x=0

⇔3x(x-1)=0

⇔x=0 (TMĐK) hoặc x=1 (loại)

Vậy tập nghiệm của phương trình đã cho là:S={0}

3 tháng 4 2019

a,\(\frac{2x-5}{3}-\frac{3x-1}{2}< \frac{3-x}{5}-\frac{2x-1}{4}\)

\(\Leftrightarrow\frac{\left(2x-5\right)20}{60}-\frac{\left(3x-1\right)30}{60}< \frac{\left(3-x\right)12}{60}-\frac{\left(2x-1\right)15}{60}\)

\(\Leftrightarrow40x-100-90x+30< 36-12x-30x+15\)

\(\Leftrightarrow40x-90x+12x+30x< 36+15+100-30\)

\(\Leftrightarrow-8x< 121\)

\(\Leftrightarrow x>-\frac{378}{25}\)

9 tháng 3 2019

a,<=>\(\frac{20\left(1-2x\right)+6x}{12}\)=\(\frac{9\left(x-5\right)-24}{12}\)

=> 20-40x+6x = 9x-45-24

<=> -40x+6x-9x = -20-45-24

<=> -43x = -89

<=> x = \(\frac{89}{43}\)

c,ĐKXĐ :x\(\ne\pm1\)

<=>\(\frac{3\left(x+1\right)}{x^2+1}\) = -\(\frac{3x+2}{x^2+1}\) - \(\frac{4\left(x-1\right)}{x^2+1}\)

=> 3x+1 = -3x-2-4x+4

<=>3x+3x+4x = -1-2+4

<=> 10x = 1

<=> x =\(\frac{1}{10}\)(TMĐK)

5 tháng 3 2020

\(\frac{3x-7}{5}=\frac{2x-1}{3}\)

\(\Leftrightarrow9x-21=10x-5\)

\(\Leftrightarrow-x=16\Leftrightarrow x=-16\)

\(\frac{4x-7}{12}-x=\frac{3x}{8}\)

\(\Leftrightarrow\frac{4x-7-12x}{12}=\frac{3x}{8}\)

\(\Leftrightarrow\frac{-7-8x}{12}=\frac{3x}{8}\)

\(\Leftrightarrow-56-64x=36x\)

\(\Leftrightarrow-56=100x\Leftrightarrow x=\frac{-14}{25}\)

5 tháng 3 2020

\(\frac{x-2009}{1234}+\frac{x-2009}{5678}-\frac{x-2009}{197}=0\)

\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)=0\)

Vì \(\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)\ne0\)nên x - 2019 = 0

Vậy x = 2019

\(\frac{5x-8}{3}=\frac{1-3x}{2}\)

\(\Leftrightarrow10x-16=3-9x\)

\(\Leftrightarrow19x=19\Leftrightarrow x=1\)