K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2022

a. -Xét △ABC: AD là đường phân giác (gt)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BD}{CD}\) (định lí về đường phân giác trong tam giác)

\(\Rightarrow\dfrac{AB}{16}=\dfrac{6}{8}\)

\(\Rightarrow AB=\dfrac{6}{8}.16=12\left(cm\right)\)

b) -Xét △ABC: DE//AB (gt)

\(\Rightarrow\dfrac{EA}{EC}=\dfrac{BD}{CD}\) (định lí Ta-let)

Mà \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\left(cmt\right)\)

\(\Rightarrow\dfrac{EA}{EC}=\dfrac{AB}{AC}\) nên \(AC.EA=AB.EC\)

c) -Ta có: \(\widehat{BAD}=\widehat{CAD}\) (AD là tia phân giác của \(\widehat{BAC}\))

Mà \(\widehat{BAD}=\widehat{ADE}\) (AB//DE và so le trong)

\(\Rightarrow\widehat{CAD}=\widehat{ADE}\) nên △ADE cân tại E.

\(\Rightarrow AE=DE\)

-Xét △AIE: AP là đường phân giác.

\(\Rightarrow\dfrac{PE}{PI}=\dfrac{AE}{AI}\)(định lí về đường phân giác trong tam giác)

Mà \(AE=DE\left(cmt\right)\)\(AI=BI\) (I là trung điểm AB)

\(\Rightarrow\dfrac{PE}{PI}=\dfrac{DE}{BI}\)

-Xét △QDE: DE//BI.

\(\Rightarrow\dfrac{QD}{QI}=\dfrac{DE}{BI}\) (hệ quả định lí Ta-let)

Mà \(\dfrac{PE}{PI}=\dfrac{DE}{BI}\) nên \(\dfrac{PE}{PI}=\dfrac{QD}{QI}\)

 

b) Ta có: \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)(cmt)

nên \(\dfrac{AC}{AB}=\dfrac{DC}{BD}\)(1)

Xét ΔABC có 

D\(\in\)BC(gt)

E\(\in\)AC(gt)

DE//AB(gt)

Do đó: \(\dfrac{EC}{EA}=\dfrac{CD}{DB}\)(Định lí Ta lét)(2)

Từ (1) và (2) suy ra \(\dfrac{AC}{AB}=\dfrac{EC}{AE}\)

hay \(AC\cdot AE=AB\cdot EC\)(đpcm)

a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)(Tính chất tia phân giác của tam giác)

\(\Leftrightarrow\dfrac{AB}{6}=\dfrac{10}{8}\)

hay AB=7,5(cm)

Vậy: AB=7,5cm

1 tháng 3 2020

Tui viết đó nhá,ko phải copy đâu nha !