K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

\(A=\left(3x+5\right)\left(2x-1\right)-\left(1-4x\right)\left(3x+2\right)\)

\(=6x^2+7x-5+12x^2+5x-2\)

\(=18x^2+12x-7\)

\(\left|x\right|=2\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)

Thay \(x=-2\) vào biểu thức A ta được :

\(A=18\left(-2\right)^2+12\left(-2\right)-7=41\)

Thay \(x=2\) vào biểu thức A ta được :

\(A=18.2^2+12.2-7=89\)

\(B=\left(2x+y\right)\left(2x-y\right)+xy\left(x-y\right)-xy\left(x+y\right)\)

\(=4x^2-y^2+x^2y-xy^2-x^2y-xy^2\)

\(=4x^2-2xy^2-y^2\)

Thay \(x=0\)\(y=-1\) vào biểu thức B ta được :

\(B=4.0^2-2.0.\left(-1\right)^2-\left(-1\right)^2=-1\)

12 tháng 12 2020

a, \(\frac{x^2}{x+1}+\frac{2x}{x^2-1}+\frac{1}{x+1}+1\)

\(=\frac{x^2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\frac{x^3-x^2-2x+x-1-x^2-1}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^3-2x^2-x-2}{\left(x-1\right)\left(x+1\right)}\)

21 tháng 9 2016

a) =2x - 3 =0

     x = 3/2

b) (5x -1)2 = 0

     5x - 1 =  0

       x = 1/5

c) = ( x +3)2 = 0

        x+3  = 0

         x = -3

d) =(13+y)(13-y) = 0

        y = 13; -13

e) xem lại đề bài này

21 tháng 9 2016

thank bạn nhiều lắm

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

6 tháng 4 2017

Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 \(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(M=x^3+x^2y-2x^2-xy-y^2+\left(2y+y\right)+x-\left(-2+1\right)\)

\(M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+1\)

\(M=\left(x^2.x+x^2.y-2x^2\right)-\left(x.y+y.y-2y\right)+\left(x+y-2\right)+1\)

\(M=x^2.\left(x+y-2\right)-y.\left(x+y-2\right)+\left(x+y-2\right)+1\)

\(M=x^2.0+y.0+0+1\)

\(M=1\)

\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-2\)

\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-\left(-4+2\right)\)

\(N=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2x+2y-4\right)+2\)

\(N=\left(x^2x+x^2y-2x^2\right)-\left(xyx+xyy-2xy\right)+\left(2x+2y-4\right)+2\)

\(N=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)

\(N=x^2.0-xy.0+2.0+2\)

\(N=2\)

\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(P=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left(x^2+xy-2x\right)+3\)\(P=\left(x^3x+x^3y-2x^3\right)+\left(x^2y.x+x^2yy-2x^2y\right)-\left(xx+xy-2x\right)+3\)

\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3\)

\(P=x^3.0+x^2y.0-x.0+3\)

\(P=3\)

Tích mình nha!hahahihi

6 tháng 4 2017

Mà bài này hình như học ở lớp 7 rồi!lolang