Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
a) Xét tứ giác BHCD có:
M là trung điểm BC
M là trung điểm HD(H đối xứng D qua M)
=> BHCD là hbh
b) Gọi E, F lần lượt là giao điểm CH với AB và BH với AC
=> BF và CE là đường cao tam giác ABC
\(\Rightarrow\left\{{}\begin{matrix}BF\perp AC\\CE\perp AB\end{matrix}\right.\)
Mà CD//BF,BD//CE(BHCD là hbh)
=> \(\left\{{}\begin{matrix}BD\perp AB\\CD\perp AC\end{matrix}\right.\)
=> Tam giác ABD vuông tại B và tam giác ACD vuông tại C
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
a: Xét tứ giác BHCD có
M là trung điểm của BC
M là trung điểm của HD
Do đó: BHCD là hình bình hành