K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

2 tháng 12 2017

a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^

3 tháng 1 2016

a) a+4b chia hết cho 7 thì 5a+20b cũng chia hết cho 7

vậy (5a+20b)-(5a+3b) chia hết cho 7 nên 17b chia hết cho7

vì 17 không chia hết cho7 nên b phải chia hết cho 7

5a+3b chia hết cho 7 thì 20a+12b cũng chia hết cho 7

a+4b chia hết cho 7 thì 3a +12b cũng chia hết cho 7

vậy (20a+12b)-(3a+12b) chia hết cho7 nên 17a chia hết cho7

vì 17 không chia hết cho7 nên a phải chia hết cho 7

vì a chia hết cho7 và b chia hết cho 7 nên a+4b chia hết cho 7

b) tương tự như câu a

tích mình nhé Kim Chi !

11 tháng 1 2023

Ta có P = 10a + 3b

= 10a + 35b - 32b

= 5(2a + 7b) - 32b

Vì \(2a+7b⋮32\)

<=> 5(2a + 7b) \(⋮32\)

<=> 5(2a + 7b) - 32b \(⋮32\) (do  \(32b⋮32\forall b\inℤ\))

<=> P \(⋮32\) (ĐPCM) 

 

2 tháng 11 2017

+Nếu 2a + 3b chia hết cho 17 => 4 .(2a+3b) chia hết cho 17

<=> 8a+12b chia hết cho 17

Xét 8a+12b+(9a+5b) = 17a+17b chia hết cho 17 

Mà 8a+12b chia hết cho 17 => 9a+ 5b chia hết cho 17

+Nếu 9a+5b chia hết cho 17 => 4.(9a+5b) chia hết cho 17

<=> 36a+20b chia hết cho 17

<=> 36a+20b-(34a+17b) chia hết cho 17 ( vì 34a+17b chia hết cho 17)

<=> 2a+3b chia hết cho 17

=> ĐPCM