Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: \(5\left(x-1\right)^2-\left(1-x\right)\)
\(=5\left(x-1\right)^2+\left(x-1\right)\)
\(=\left(x-1\right)\left(5x-5+1\right)\)
\(=\left(x-1\right)\left(5x-4\right)\)
a: Ta có: \(5x^2-4xy-x^2y\)
\(=x\left(5x-4y-xy\right)\)
a.
\(x^2+4y^2+4xy=0\)
\(\Leftrightarrow\left(x+2y\right)^2=0\)
\(\Leftrightarrow x+2y=0\)
\(\Leftrightarrow x=-2y\)
Vậy pt đã cho có vô số nghiệm dạng \(\left(x;y\right)=\left(-2k;k\right)\) với k là số thực bất kì (nếu đề đúng)
b.
\(2y^4-9y^3+2y^2-9y=0\)
\(\Leftrightarrow2y^2\left(y^2+1\right)-9y\left(y^2+1\right)=0\)
\(\Leftrightarrow\left(2y^2-9y\right)\left(y^2+1\right)=0\)
\(\Leftrightarrow y\left(2y-9\right)\left(y^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\2y-9=0\\y^2+1=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{9}{2}\end{matrix}\right.\)
c. Em kiểm tra lại đề chỗ \(3xy^2\), đề đúng như vậy thì pt này ko giải được
Ta có:(x-2y).(x2+2xy+4y2)-(x+y).(x2-xy-y2)
=x3-2x2y+2x2y+4xy2-8y3-x3-x2y+x2y+xy2+xy2
=6xy2-7y3.
Đề có thêm điều kiện gì không vậy bạn? Ví dụ như x, y là số nguyên hay gì đó??? bạn cần ghi đầy đủ đề.
\(\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\)
\(\Leftrightarrow x^3+8y^3=0\) (*)
\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\)
\(\Leftrightarrow x^3-8y^3=16\) (**)
Từ (*) và (**) cộng theo vế:
\(\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)
Thay x = 2 và (*):
\(\Leftrightarrow2^3+8y^3=0\Leftrightarrow8y^3=-8\Leftrightarrow y^3=-1\Leftrightarrow y=-1\)
\(A=\dfrac{y^2\left(x-2\right)\left(x+2\right)}{4xy}\cdot\dfrac{x^2y}{xy\left(2-x\right)}\)
\(=\dfrac{-y^2\left(2-x\right)\left(x+2\right)}{xy\left(2-x\right)}\cdot\dfrac{x^2y}{4xy}\)
\(=\dfrac{-y\left(x+2\right)}{x}\cdot\dfrac{x}{4}=\dfrac{-y\left(x+2\right)}{4}\)
thanks ạ