Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-\frac{1}{97.96}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+\frac{1}{97.96}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(=\frac{1}{99}-\left(\frac{1}{99}-\frac{1}{98}+\frac{1}{98}-\frac{1}{97}+\frac{1}{97}-\frac{1}{96}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-\frac{1}{1}\right)\)
\(=\frac{1}{99}-\left(\frac{1}{99}-1\right)=\frac{1}{99}-\frac{1}{99}+1=1\)
Giải:
\(\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-\dfrac{1}{97.96}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(=-\left(-\dfrac{1}{99}+\dfrac{1}{99.98}+\dfrac{1}{98.97}+\dfrac{1}{97.96}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(=-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}-\dfrac{1}{99}\right)\)
\(=-\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}-\dfrac{1}{99}\right)\)
\(=-\left(\dfrac{1}{1}-\dfrac{1}{99}-\dfrac{1}{99}\right)\)
\(=-\dfrac{97}{99}\)
Vậy ...
\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-\frac{1}{97.96}+......+\frac{1}{2.1}\)
= \(\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}\right)\)
= \(\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{98}-\frac{1}{99}\right)\)
= \(\frac{1}{99}-\left(1-\frac{1}{99}\right)\)
= \(\frac{1}{99}-\frac{98}{99}\)
= \(\frac{-97}{99}\)
\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+\frac{1}{97}-....-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)
\(\frac{1}{99}+1=\frac{100}{99}\)
\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-\frac{1}{97.96}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=-\left(\frac{1}{99}+\frac{1}{99.98}+\frac{1}{98.97}+\frac{1}{97.96}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(=-\left(\frac{1}{99}-\frac{1}{98}+\frac{1}{98}-\frac{1}{97}+\frac{1}{97}-\frac{1}{96}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\right)\)
\(=-\left(\frac{1}{99}-1\right)\)
\(=-\frac{98}{99}\)
\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\right)\)
\(=\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)
\(=\frac{1}{99}-\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{99}-\frac{98}{99}\)
\(=-\frac{97}{99}\)
Ủng hộ !
\(=\frac{1}{99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(=\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)
\(=\frac{1}{99}-\frac{98}{99}=-\frac{97}{99}\)
Giải:
\(\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-\dfrac{1}{97.96}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(=\dfrac{1}{99}-\left(\dfrac{1}{99.98}+\dfrac{1}{98.97}+\dfrac{1}{97.96}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(=\dfrac{1}{99}-\left(\dfrac{1}{99}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{96}+...+\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{2}-1\right)\)
\(=\dfrac{1}{99}-\left(\dfrac{1}{99}-1\right)\)
\(=\dfrac{1}{99}-\dfrac{-98}{99}\)
\(=\dfrac{1}{99}+\dfrac{98}{99}\)
\(=\dfrac{99}{99}=1\)
Chúc bạn học tốt!
\(\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-\dfrac{1}{97.96}-...-\dfrac{1}{3.2}+\dfrac{1}{2.1}\)
=\(\dfrac{1}{99}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}-\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{97}+\dfrac{1}{96}-\dfrac{1}{96}+...+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{2}+1\)
=\(0+1\)
=\(1\)
Bạn học tốt^^