K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
KK
1 tháng 4 2018
a) áp dụng bđt cô si cho 2 số ta có
\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}\)
⇔ \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\) (đpcm )
b) áp dụng bđt cô si dạng phân số ta có
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}\)
⇔ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\) (đpcm)
DQ
0
\(P=x+y+\frac{9}{x}+\frac{16}{y}=x+\frac{9}{x}+y+\frac{16}{y}\ge2\sqrt{x.\frac{9}{x}}+2\sqrt{y.\frac{16}{y}}=14\)
Dấu \(=\)khi \(x=3,y=4\).
Có thể đề bài đúng phải là điều kiện \(x+y\le4\).
Ta có:
\(P=x+y+\frac{9}{x}+\frac{16}{y}=\frac{49}{16}x+\frac{9}{x}+\frac{49}{16}y+\frac{16}{y}-\frac{33}{16}\left(x+y\right)\)
\(\ge2\sqrt{\frac{49}{16}x\times\frac{9}{x}}+2\sqrt{\frac{49}{16}y\times\frac{16}{y}}-\frac{33}{16}\times4\)
\(=\frac{21}{2}+14-\frac{33}{4}=\frac{65}{4}\)
Dấu \(=\)khi \(\hept{\begin{cases}\frac{49}{16}x=\frac{9}{x}\\\frac{49}{16}y=\frac{16}{y}\\x+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{12}{7}\\y=\frac{16}{7}\end{cases}}\).