Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,P\left(1\right)=-18\Leftrightarrow1+a+b+c+d-141=-18\\ \Leftrightarrow a+b+c+d=122\left(1\right)\\ P\left(2\right)=-11\\ \Leftrightarrow32+16a+8b+4c+2d-141=-11\\ \Leftrightarrow16a+8b+4c+2d=98\\ \Leftrightarrow8a+4b+2c+d=49\\ P\left(3\right)=243+81a+27b+9c+3d-141=0\\ \Leftrightarrow81a+27b+9c+3d=-102\\ \Leftrightarrow27a+9b+3c+d=-34\left(3\right)\\ P\left(x\right):\left(x-5\right)R34\\ \Leftrightarrow x^5+ax^4+bx^3+cx^2+dx-141=\left(x-5\right)\cdot a\left(x\right)+34\\ \Leftrightarrow P\left(5\right)=3125+625a+125b+25c+5d-141=34\\ \Leftrightarrow625a+125b+25c+5d=-2950\\ \Leftrightarrow125a+25b+5c+d=-590\left(4\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}a+b+c+d=122\\8a+4b+2c+d=49\\27a+9b+3c+d=-34\\125a+25b+5c+d=-590\end{matrix}\right.\)
\(\Leftrightarrow a=-15;b=85;c=-223;d=275\)
a: Theo đề, ta có: a*0+b=50000 và 2a+b=60000
=>b=50000 và a=5000
=>s=5000t+50000
b: Nếu không là hội viên thì phải trả:
90000-50000=40000(đồng)
1.
Xét pt đầu:
\(x^2-xy+x-y=0\)
\(\Leftrightarrow x\left(x-y\right)+x-y=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-y\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=y\end{matrix}\right.\)
TH1: \(x=-1\) thay xuống pt dươi:
\(\sqrt{y^2+15}=-3-2+\sqrt{9}\Leftrightarrow\sqrt{y^2+15}=-2< 0\) (vô nghiệm)
TH2: thay \(y=x\) xuống pt dưới:
\(\sqrt{x^2+15}=3x-2+\sqrt{x^2+8}\) (1)
\(\Rightarrow3x-2=\sqrt{x^2+15}-\sqrt{x^2+8}=\dfrac{7}{\sqrt{x^2+15}+\sqrt{x^2+8}}>0\)
\(\Rightarrow x>\dfrac{2}{3}\)
Do đó (1) tương đương:
\(3x-2+\sqrt{x^2+8}-\sqrt{x^2+15}=0\)
\(\Leftrightarrow3x-3+\sqrt{x^2+8}-3+4-\sqrt{x^2+15}=0\)
\(\Leftrightarrow3\left(x-1\right)+\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+8}+3}-\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+15}+4}=0\)
\(\Leftrightarrow\left(x-1\right)\left[3+\left(x+1\right)\left(\dfrac{1}{\sqrt{x^2+8}+3}-\dfrac{1}{\sqrt{x^2+15}+4}\right)\right]=0\)
\(\Leftrightarrow x-1=0\) (do \(x+1>0\) nên ngoặc phía sau luôn dương)
\(\Leftrightarrow x=y=1\)
2.
Pt đầu tương đương:
\(y^2-x+x^2-2xy+x=0\)
\(\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow y=x\)
Thay xuống pt dưới:
\(2x^2+x-x^2+x-3=0\)
\(\Leftrightarrow x^2+2x-3=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-3\Rightarrow y=-3\end{matrix}\right.\)
1.2
Đề câu này bị lỗi đoạn cuối, chỗ nằm giữa \(-3x+...+2014\) là gì ấy nhỉ? \(2^2\) đúng không?
Đây là giải theo cách dịch đề bài:
\(A=5x^5-15x^4+14x^3-12x^2-3x+2^2+2014\)
Khi đó:
\(x=\sqrt[3]{2}+1\Rightarrow x-1=\sqrt[3]{2}\)
\(\Rightarrow\left(x-1\right)^3=2\)
\(\Rightarrow x^3-3x^2+3x-1=2\)
\(\Rightarrow x^3-3x^2+3x-3=0\)
Ta có:
\(A=5x^2\left(x^3-3x^2+3x-3\right)-x^3+3x^2-3x+4+2014\)
\(=5x^2.0-\left(x^3-3x^2+3x-3\right)+2015\)
\(=-0+2015=2015\)
Còn nếu đề bài là:
\(A=\left(5x^5-15x^4+14x^3-12x^2-3x+2\right)^2+2014\)
Thì kết quả là: \(A=1+2014=2015\)
2.3
Lại 1 câu đề lỗi nữa, biểu thức của pt là:
\(x^2+\left(2m-2\right)x-m^2=0\)
hay \(x^2+2m-2x-m^2=0\)?
Người đánh đề bài này rất ẩu tả, vô trách nhiệm
Coi như đề bài là: \(x^2+\left(2m-2\right)x-m^2=0\)
Ta có:
\(\Delta'=\left(m-1\right)^2+m^2=\dfrac{1}{2}\left(2m-1\right)^2+\dfrac{1}{2}>0\) ; \(\forall m\)
Pt luôn có 2 nghiệm với mọi m
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m^2\end{matrix}\right.\)
\(\left|x_1-x_2\right|=6\Leftrightarrow\left(x_1-x_2\right)^2=36\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=36\)
\(\Leftrightarrow\left(2m-2\right)^2+4m^2=36\)
\(\Leftrightarrow m^2-m-4=0\Rightarrow m=\dfrac{1\pm\sqrt{17}}{2}\)