K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2019

Ta có 

\(\frac{a^2}{a+b^2}=\frac{a^2+ab^2-ab^2}{a+b^2}=a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\ge a-\frac{1}{4}b\left(a+1\right)\)

Khi đó 

\(A\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(ab+bc+ac\right)\)

Mà \(ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=3\)

=> \(A\ge\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)( ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

30 tháng 5 2019

\(a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\)

Do \(a+b^2\ge2b\sqrt{a}\)

\(a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\ge a-\frac{1}{4}b\left(a+1\right)\)

Do \(\sqrt{a}\le\frac{a+1}{2}\)

12 tháng 6 2019

BĐT

<=> \(\frac{3\left(a^2+b^2+c^2\right)+ab+bc+ac}{3\left(ac+bc+ac\right)}\ge\frac{8}{9}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)

<=>\(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{a\left(a\left(b+c\right)+bc\right)}{b+c}+...\right)\)

<=> \(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(a^2+b^2+c^2+\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)

<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)

Mà \(\frac{abc}{b+c}\le abc.\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{4}\left(ab+bc\right)\)

Khi đó BĐT 

<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{1}{2}\left(ab+bc+ac\right)\right)\)

=> \(a^2+b^2+c^2\ge ab+bc+ac\)(luôn đúng )

=> ĐPCM

Dấu bằng xảy ra khi a=b=c

Cách này chủ yếu biến đổi tương đương nên chắc phù hợp với lớp 8

12 tháng 6 2019

Nếu sử dụng SOS nhìn vào sẽ làm đc liền vì có Nesbitt lẫn \(\frac{a^2+b^2+c^2}{ab+bc+ac}\)

2 tháng 6 2019

Anh làm cách cosi

\(VT^2=\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+2\left(b^2+a^2+c^2\right)\)

Ta có \(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}\ge2b^2\)

       \(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge2c^2\)=>     \(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge a^2+b^2+c^2\)

         \(\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}\ge2c^2\)

=> \(VT^2\ge3\left(a^2+b^2+c^2\right)=9\)

=> \(VT\ge3\)

Dấu bằng xảy ra khi a=b=c1

2 tháng 6 2019

xD

Có: \(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge3\)(1)

\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+2\left(a^2+b^2+c^2\right)\ge9\)

\(\Leftrightarrow\frac{\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3-3a^2b^2c^2}{a^2b^2c^2}\ge0\)

Đặt \(\hept{\begin{cases}ab=x\\bc=y\\ac=z\end{cases}\left(x,y,z>0\right)}\)

\(\left(1\right)\Leftrightarrow\frac{x^3+y^3+z^3-3xyz}{\left(abc\right)^2}\ge0\)

\(\Leftrightarrow\frac{\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]}{\left(abc\right)^2}\ge0\)(đúng)

Vậy ........... dấu = xảy ra khi và chỉ khi x=y=z hay a=b=c=1

9 tháng 2 2019

"Chấm" nhẹ hóng cao nhân ạ :)

P/s: mong các bác giải theo cách lớp 8 ạ :) Tặng 5SP / 1 câu nhé ;)

9 tháng 2 2019

Câu 3: Tham khảo đây nhá: Câu hỏi của Trương Thanh Nhân, t làm r,giờ lười đánh lại.

19 tháng 6 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(\ge\frac{1}{2}\frac{4}{a+b}+\frac{1}{2}\frac{4}{b+c}+\frac{1}{2}\frac{4}{c+a}\)

\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)

Dấu "=" xảy ra <=> a = b = c

19 tháng 6 2020

CM theo bdt co-si

Áp dụng bdt Co - si cho cặp số dương a2/c và c

Ta có: \(\frac{a^2}{c}+c\ge2\sqrt{\frac{a^2}{c}.c}=2a\)(1)

CMTT: \(\frac{b^2}{a}+a\ge2b\)(2)

         \(\frac{c^2}{b}+b\ge2c\)(3)

Từ (1); (2) và (3) cộng vế theo vế, ta có:

\(\frac{a^2}{c}+c+\frac{b^2}{a}+a+\frac{c^2}{b}+b\ge2a+2b+2c\)

<=> \(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\ge2a+2b+2c-a-b-c=a+b+c\)(Đpcm)

19 tháng 6 2020

\(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Dấu "=" xảy ra <=> a = b = c

4 tháng 4 2020

Ta cần tìm m để BĐT dưới là đúng

\(\frac{1}{a^2+b+c}=\frac{1}{a^2-a+3}\le\frac{1}{3}+m\left(a-1\right)\Leftrightarrow-\frac{a\left(a-1\right)}{3\left(a^2-a+3\right)}\le m\left(a-1\right)\)

Tương tự như trên ta dự đoán rằng\(m=\frac{-1}{9}\)thì BĐT phụ đúng

\(\frac{1}{a^2-a+3}\le\frac{4}{9}-\frac{a}{9}\Leftrightarrow0\le\frac{\left(a-1\right)^2\left(3-a\right)}{3\left(a^2-a+3\right)}\Leftrightarrow0\le\frac{\left(a-1\right)^2\left(b+c\right)}{3\left(a^2-a+3\right)}\)

Cmtt ta được

\(\frac{1}{b^2-b+3}\le\frac{4}{9}-\frac{b}{9};\frac{1}{c^2-c+3}\le\frac{4}{9}-\frac{c}{9}\)

Cộng theo vế của BĐT trên ta được

\(\frac{1}{a^2+b+c}+\frac{1}{b^2+a+c}+\frac{1}{c^2+b+a}\le\frac{4}{3}-\frac{a+b+c}{9}=1\)

=> ĐPCM

4 tháng 4 2020

Cái đó là cách UCT chứ còn j nữa. Em cần tìm cách khác 

24 tháng 8 2018

Vì a+b+c=0=>(a+b)=-c. Tương tự:(b+c)=-a;(a+c)=-b.

Ta có A=:\(\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}\)

\(=\frac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\frac{b^2}{\left(b-c\right)\left(b+c\right)-a^2}+\frac{c^2}{\left(c-a\right)\left(c+a\right)-b^2}\)

\(=\frac{a^2}{\left(a-b\right).\left(-c\right)-c^2}+tươngtự\)

\(=\frac{a^2}{-ca+bc-c^2}\)+ tương tự

\(=\frac{a^2}{c\left(b-c-a\right)}+tươngtự\)

\(=\frac{a^2}{c\left(b-\left(c+a\right)\right)}\)+ tương tự nha 

\(=\frac{a^2}{c\left(b-\left(-b\right)\right)}+tươngtự=\frac{a^2}{2bc}+tươngtự\)

Sau đó ta có :\(\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2bc}\)

=\(\frac{a^3+b^3+c^3}{2abc}=\frac{\left(a+b\right)^3-3ab\left(a+b\right)+c^3}{2abc}\)

\(=\frac{\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b\right)}{2abc}\)=\(\frac{0-0-3ab\left(-c\right)}{2abc}\)(do a+b+c=0)

=\(\frac{3abc}{2abc}=\frac{3}{2}\)Ok r bạn