Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AC=2AB\left(gt\right)\Rightarrow AB=\frac{1}{2}AC\)
I là trung điểm của AC (gt) \(\Rightarrow IC=\frac{1}{2}AC\Rightarrow AB=IC\)
\(\hept{\begin{cases}\widehat{B}+\widehat{C}=90^0\\\widehat{C}+\widehat{KIC}=90^0\end{cases}\Rightarrow\widehat{B}=\widehat{KIC}}\)
\(\Delta AHB=\Delta CKI\left(ch-gn\right)\Rightarrow AH=CK\)(1)
b, Tam giác AHC có: I là trung điểm của AC và IK // AH (vì cùng vuông góc với HC)
Nên K là trung điểm của HC \(\Rightarrow HC=2CK\) (2)
D đối xứng với H qua A (gt) nên A là trung điểm của HD\(\Rightarrow HD=2AH\) (3)
Từ (1),(2) và (3) ta được HC = HD
Hình chữ nhật CHDE (gt) có HC = HD (cmt) thì CHDE là hình vuông.
Chúc bạn học tốt.
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật