K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)

\(AD=\dfrac{2\cdot3\cdot4}{3+4}\cdot cos45=\dfrac{12}{7}\sqrt{2}\left(cm\right)\)

b: Sửa đề: vuông góc AC

Xét ΔABC vuông tại A và ΔHDC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHDC

16 tháng 3 2022

a, Theo định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=4cm\)

Vì BD là pg nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{DC}{BC}=\dfrac{AD}{AB}=\dfrac{4}{8}=\dfrac{1}{2}\Rightarrow DC=\dfrac{5}{2}cm;AD=\dfrac{3}{2}\)cm 

b, Vì DE // AB Theo hệ quả Ta lét 

\(\dfrac{DC}{AC}=\dfrac{DE}{AB}\Rightarrow DE=\dfrac{AB.DC}{AC}=\dfrac{15}{8}\)cm

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)

hay AC=8(cm)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)

Vậy: AC=8cm; AD=3cm; CD=5cm

b) Xét ΔDHC vuông tại H và ΔABC vuông tại A có 

\(\widehat{C}\) chung

Do đó: ΔDHC\(\sim\)ΔABC(g-g)

21 tháng 8 2016

Xét tam giác ABC có :

\(bc^2\)=\(5^2\)=25

\(ab^2\)+\(ac^2\)=\(3^2\)+\(4^2\)=9+16=25   

Suy ra:\(bc^2=ab^2+ac^2\)(định lí py-ta-go đảo)