Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10.
\(H\left(x\right)=-5x^4+10x^3-15x+1\)
\(=-5x\left(x^3-2x^2+3\right)+1\)
\(=-5x.0+1\)
\(=1\)
9.
\(P\left(x\right)-Q\left(x\right)=\left(1-a\right)x^3+x^2+x-6\)
\(P\left(x\right)-Q\left(x\right)\) là đa thức bậc 3 khi và chỉ khi \(1-a\ne0\)
\(\Rightarrow a\ne1\)
a: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
b: Xét ΔABI có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABI cân tại A
hay AB=AI
\(\dfrac{x}{y}=\dfrac{5}{2}\) ⇒\(\dfrac{x}{5}=\dfrac{y}{2}\)
\(\dfrac{y}{z}=\dfrac{1}{3}\) ⇒\(\dfrac{y}{1}=\dfrac{z}{3}\) ⇒\(\dfrac{y}{2}=\dfrac{z}{6}\)
⇒\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{6}\) ⇒\(\dfrac{x^2}{25}=\dfrac{y^2}{4}=\dfrac{2z^2}{72}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{25}=\dfrac{y^2}{4}=\dfrac{2z^2}{72}=\dfrac{x^2-y^2+2z^2}{25-4+72}=\dfrac{372}{93}=4\)
⇒\(\left\{{}\begin{matrix}x=4.5=20\\y=4.2=8\\z=4.6=24\end{matrix}\right.\)
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó:ΔABM=ΔACM
b: ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: BC=6cm
nên BM=3cm
=>AM=4cm
d: Xét ΔABC cân tại A có AM là đường cao
nên AM là phân giác của góc BAC
Xét ΔABC có
AM là đường phân giác
BI là đường phân giác
AM cắt BI tại I
Do đó: CI là tia phân giác của góc ACB
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>góc BED=90 độ
=>DE vuôg góc BC
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>D,F,E thẳng hàng