Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(1;-1\right)\\\overrightarrow{BC}=\left(-3;4\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{u}=3\overrightarrow{AB}+2\overrightarrow{BC}=\left(-3;5\right)\)
Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(1-x;5-y\right)\)
Để ABCD là hbh \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-x=1\\5-y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=6\end{matrix}\right.\)
\(\Rightarrow D\left(0;6\right)\)
\(a,\Leftrightarrow\Delta=16+4\left(m+4\right)\left(m-1\right)\ge0\\ \Leftrightarrow4m^2+12m\ge0\\ \Leftrightarrow4m\left(m+3\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge0\\m\le-3\end{matrix}\right.\\ b,\Leftrightarrow\Delta=\left(2m+1\right)^2-4\left(m^2+m-6\right)\ge0\\ \Leftrightarrow4m^2+4m+1-4m^2-4m+24\ge0\\ \Leftrightarrow25\ge0\)
Vậy PT luôn có nghiệm với mọi m
\(c,\Leftrightarrow\Delta=\left(m-1\right)^2+40\left(m-1\right)\ge0\\ \Leftrightarrow\left(m-1\right)\left(m+39\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}m\ge1\\m\le-39\end{matrix}\right.\)