K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 8 2021

Với 2 số thực bất kì \(x_1;x_2\) sao cho \(x_1< x_2\) ta có:

\(f\left(x_1\right)-f\left(x_2\right)=-x_1^3+x_1^2-x_1+5-\left(-x_2^3+x_2^2-x_2+5\right)\)

\(=x_2^3-x_1^3+x_1^2-x_2^2-x_1+x_2\)

\(=\left(x_2-x_1\right)\left(x_1^2+x_2^2+x_1x_2\right)-\left(x_2-x_1\right)\left(x_1+x_2\right)+x_2-x_1\)

\(=\left(x_2-x_1\right)\left(x_1^2+x_2^2+x_1x_2-x_1-x_2+1\right)\)

\(=\left(x_2-x_1\right)\left[\left(x_1+\dfrac{x_2}{2}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}x_2^2-\dfrac{1}{2}x_2+\dfrac{3}{4}\right]\)

\(=\left(x_2-x_1\right)\left[\left(x_1+\dfrac{x_2}{2}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\left(x_2-\dfrac{1}{3}\right)^2+\dfrac{2}{3}\right]>0\)

\(\Rightarrow f\left(x_1\right)>f\left(x_2\right)\Rightarrow\) hàm nghịch biến trên R

NV
21 tháng 4 2021

2b.

\(Q=\dfrac{cosx}{sinx}+\dfrac{sinx}{1+cosx}=\dfrac{cosx\left(1+cosx\right)+sin^2x}{sinx\left(1+cosx\right)}=\dfrac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}=\dfrac{cosx+1}{sinx\left(1+cosx\right)}=\dfrac{1}{sinx}\)

4b.

\(\Delta\) có 1 vtpt là (3;-4)

Gọi d là đường thẳng qua M và vuông góc \(\Delta\Rightarrow d\) nhận (4;3) là 1 vtpt

Phương trình d:

\(4\left(x-4\right)+3\left(y+2\right)=0\Leftrightarrow4x+3y-10=0\)

H là giao điểm d và \(\Delta\) nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}3x-4y+5=0\\4x+3y-10=0\end{matrix}\right.\) \(\Rightarrow H\left(1;2\right)\)

1: (x-1)^2+(y+2)^2=25

=>R=5; I(1;-2)

2: Δ'//Δ nên Δ': 3x-4y+c=0

d(I;Δ')=5

=>\(\dfrac{ \left|3\cdot1+\left(-2\right)\cdot\left(-4\right)+c\right|}{\sqrt{3^2+\left(-4\right)^2}}=5\)

=>|c+11|=25

=>c=14 hoặc c=-36

=>3x-4y+14=0 hoặc 3x-4y-36=0

3x-4y+14=0 

=>VTPT là (3;-4) và (Δ') đi qua A(2;5)

=>VTCP là (4;3)

=>PTTS là x=2+4t và y=5+3t

3x-4y-36=0

=>VTPT là (3;-4) và (Δ') đi qua B(0;-9)

=>VTCP là (4;3)

PTTS là x=0+4t và y=-9+3t

 

NV
19 tháng 3 2022

2.

Áp dụng định lý hàm cosin:

\(b=\sqrt{a^2+c^2-2ac.cosB}=\sqrt{8^2+3^2-2.8.3.cos60^0}=7\)

\(S_{ABC}=\dfrac{1}{2}ac.sinB=\dfrac{1}{2}.8.3.sin60^0=6\sqrt{3}\)

4.

\(\Delta=\left(m+2\right)^2-16>0\Leftrightarrow m^2+4m-12>0\Rightarrow\left[{}\begin{matrix}m>2\\m< -6\end{matrix}\right.\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m-2\\x_1x_2=4\end{matrix}\right.\)

\(x_1+x_2+x_1x_2>1\)

\(\Leftrightarrow-m-2+4>1\)

\(\Rightarrow m< 1\) (2)

Kết hợp (1); (2) ta được \(m< -6\)