Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điện trở tương đương của đoạn mạch :
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{60.40}{60+40}=24\left(\Omega\right)\)
b) Hiệu điện thế giữa hai đầu đoạn mạch :
\(U=I.R_{tđ}=2.24=48\left(V\right)\)
⇒ \(U=U_1=U_2=48\left(V\right)\) (vì R1 // R2)
Cường độ dòng điện chạy qua mỗi điện trở :
\(I_1=\dfrac{U_1}{R_1}=\dfrac{48}{60}=0,8\left(A\right)\)
\(I_2=\dfrac{U_2}{R_2}=\dfrac{48}{40}=1,2\left(A\right)\)
Chúc bạn học tốt
a)\(R_{tđ}=\dfrac{U}{I}=\dfrac{1,2}{0,12}=10\Omega\)
b)Ta có: \(\dfrac{1}{R_{TĐ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}=\dfrac{1}{10}\) (1)
Mắc song song: \(U_1=U_2=U_m=1,2V\)
\(\dfrac{R_1}{R_2}=\dfrac{I_2}{I_1}=\dfrac{I_2}{1,5\cdot I_2}=\dfrac{2}{3}\Rightarrow R_1=\dfrac{2}{3}R_2\)
tHAY VÀO (1) TA ĐC: \(R_2=25\Omega\)
Thay vào (1) ta đc: \(R_1=\dfrac{50}{3}\Omega\)
\(MCD:\left(R_dntR1\right)//R2\)
\(->R_d=\dfrac{U_d^2}{P_d}=\dfrac{6^2}{3}=12\Omega\)
\(->R_{td}=\dfrac{\left(R_d+R1\right)\cdot R2}{R_d+R1+R2}=\dfrac{\left(12+6\right)\cdot6}{12+6+6}=4,5\Omega\)
\(->I=\dfrac{U}{R}=\dfrac{13,5}{4,5}=3A\)
\(->I_d=I1=\dfrac{P_d}{U_d}=\dfrac{3}{6}=0,5A\)
\(->I2=I-I_d1=3-0,5=2,5A\)
\(I_{AB}=I=3A\)
\(\left\{{}\begin{matrix}P_d=3\\P1=I1^2\cdot R1=0,5^2\cdot6=1,5\\P2=I2^2\cdot R2=2,5^2\cdot6=37,5\\P_{AB}=UI=13,5\cdot3=40,5\end{matrix}\right.\)(W)
Ta có: \(A//R1\)
\(=>U_A=U1=I1\cdot R1=0,5\cdot6=3V\)
\(=>I_A=\dfrac{U_A}{R_A}=\dfrac{3}{0}\) (vô lý)
a)\(R_Đ=\dfrac{U^2_Đ}{P_Đ}=\dfrac{6^2}{9}=4\Omega\)
Đèn sáng bình thường: \(I_m=I_{Đđm}=\dfrac{P_Đ}{U_Đ}=\dfrac{9}{6}=1,5A\)
\(R_{tđ}=\dfrac{U}{I}=\dfrac{9}{1,5}=6\Omega\)
\(\Rightarrow R_{1x}=R_{tđ}-R_Đ=6-4=2\Omega\)
Mà \(\dfrac{1}{R_{1x}}=\dfrac{1}{R_1}+\dfrac{1}{R_x}=\dfrac{1}{16}+\dfrac{1}{R_x}=\dfrac{1}{2}\)
\(\Rightarrow R_x=\dfrac{16}{7}\Omega\)
b) đợi mình chút nhé
b)\(U_x=U_1=U-U_Đ=9-6=3V\)
Công suất tiêu thụ trên \(R_x\): \(P_x=I_x^2\cdot R_x=R_x\cdot\dfrac{U^2}{\left(R_1+R_x\right)^2}=R_x\cdot\dfrac{U^2}{R_1^2+2R_1\cdot R_x+R_x^2}=R_x\cdot\dfrac{U^2}{\dfrac{R_1^2}{R_x}+2R_1+R_x}\)\(P_xmax\Leftrightarrow\left(\dfrac{R_1^2}{R_x}+R_x\right)min\)
Theo BĐT Coossy:
\(\dfrac{R_1^2}{R_x}+R_x\ge2\sqrt{R_1}=2\sqrt{16}=8\)
\(\Rightarrow\dfrac{R_Đ^2}{R_x}+R_x=8\Rightarrow R_x=4\Omega\)
\(P_xmax=R_x\cdot\dfrac{U^2}{\left(R_1+R_x\right)^2}=4\cdot\dfrac{3^2}{\left(16+4\right)^2}=0,09W\)
Câu 17.
\(R_{tđ}=R_1+R_2=30+10=40\Omega\)
\(U=R\cdot I=40\cdot0,6=24V\)
\(I_1=I_2=I=0,6A\)
\(U_1=I_1\cdot R_1=0,6\cdot30=18V\)
\(U_2=24-18=6V\)