K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2022

Giả sử đường thẳng chắn trên hai trục tọa độ 2 đoạn bằng nhau bằng a \(\left(a\ne0\right)\)

Khi đó, tọa độ giao điểm là: (a;0), (0;a)

Phương trình đường thẳng là: \(\dfrac{x-a}{a-0}=\dfrac{y-0}{0-a}\Leftrightarrow-a\left(x-a\right)=ay\)

\(\Leftrightarrow-x+a=y\) (*)

a. Thay M(-4;10) vào (*) ta được: \(-\left(-4\right)+a=10\Rightarrow a=6\)

Phương trình đường thẳng cần tìm là: y=-x+6

b. Thay M(2;1) vào (*) ta được: \(-2+a=1\Rightarrow a=3\)

Phương trình đường thẳng cần tìm là: y=-x+3

5:

a: sin x=2*cosx

\(A=\dfrac{6cosx+2cosx-4\cdot8\cdot cos^3x}{cos^3x-2cosx}\)

\(=\dfrac{8-32cos^2x}{cos^2x-2}\)

b: VT=sin^4(pi/2-x)+cos^4(x+pi/2)+6*1/2*sin^22x+1/2*cos4x

=cos^4x+sin^4x+3*sin^2(2x)+1/2*(1-2*sin^2(2x))

=1-2*sin^2x*cos^2x+3*sin^2(2x)+1/2-sin^2(2x)

==3/2=VP

AH
Akai Haruma
Giáo viên
13 tháng 5 2021

Bạn cần hỗ trợ bài nào?