Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow2x^2+6x-3x-9=0\)
=>(x+3)(2x-3)=0
=>x=3/2 hoặc x=-3
b: \(\Leftrightarrow6x\left(1-2x\right)=0\)
=>x=0 hoặc 1-2x=0
=>x=0 hoặc x=1/2
c: \(\Leftrightarrow8x^2=1\)
\(\Leftrightarrow x^2=\dfrac{2}{16}\)
hay \(x\in\left\{\dfrac{\sqrt{2}}{4};-\dfrac{\sqrt{2}}{4}\right\}\)
d: \(\Leftrightarrow x^4-9x^2+2x^2-18=0\)
\(\Leftrightarrow x^2-9=0\)
=>x=3 hoặc x=-3
Bài 1:
a. \(=2\sqrt{3^2}+\sqrt{15}-\sqrt{4.15}=6+\sqrt{15}-2\sqrt{15}=6-\sqrt{15}\)
b. \(=5\sqrt{10}+2\sqrt{5^2}-\sqrt{25.10}=5\sqrt{10}+10-5\sqrt{10}=10\)
c. \(=\left(\sqrt{4.7}-\sqrt{4.3}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(=2\sqrt{7^2}-2\sqrt{21}-\sqrt{7^2}+2\sqrt{21}=7\)
d. \(=\left(\sqrt{9.11}-\sqrt{9.2}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
\(=\left(3\sqrt{11}-3\sqrt{2}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
\(=3\sqrt{11^2}-3\sqrt{22}-\sqrt{11^2}+3\sqrt{22}=22\)
Bài 3:
a.
\(=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+\sqrt{x}^2\right)=1-\sqrt{x}^3=1-x\sqrt{x}\)
b.
\(=\left(\sqrt{x}+2\right)\left(\sqrt{x}^2-2\sqrt{x}+2^2\right)=\sqrt{x}^3+2^3=x\sqrt{x}+8\)
c.
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}^2+\sqrt{xy}+\sqrt{y}^2\right)=x\sqrt{x}-y\sqrt{y}\)
d.
\(=\left(x+\sqrt{y}\right)\left(x^2-x\sqrt{y}+\sqrt{y}^2\right)=x^3+y\sqrt{y}\)
\(VT=\sqrt{\dfrac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}.\left(3\sqrt{2}+\sqrt{14}\right)\)
\(=\sqrt{\dfrac{\sqrt{5}}{8\sqrt{5}+3\sqrt{5}.\sqrt{7}}}.\left(3\sqrt{2}+\sqrt{2}.\sqrt{7}\right)\)
\(=\sqrt{\dfrac{\sqrt{5}}{\sqrt{5}\left(8+3\sqrt{7}\right)}}.\left[\sqrt{2}\left(3+\sqrt{7}\right)\right]\)
\(=\sqrt{\dfrac{1}{8+3\sqrt{7}}}.\left[\sqrt{2}\left(3+\sqrt{7}\right)\right]\)
\(=\dfrac{\sqrt{2}\left(3+\sqrt{7}\right)}{\sqrt{8+3\sqrt{7}}}\)
\(=\dfrac{\sqrt{2}.\sqrt{2}\left(3+\sqrt{7}\right)}{\sqrt{2}.\sqrt{8+3\sqrt{7}}}\) (Nhân \(\sqrt{2}\) cả tử và mẫu)
\(=\dfrac{2\left(3+\sqrt{7}\right)}{\sqrt{16+6\sqrt{7}}}\)
\(=\dfrac{2\left(3+\sqrt{7}\right)}{\sqrt{\left(3+\sqrt{7}\right)^2}}\)
\(=\dfrac{2\left(3+\sqrt{7}\right)}{\left|3+\sqrt{7}\right|}\)
\(=\dfrac{2\left(3+\sqrt{7}\right)}{3+\sqrt{7}}\)
\(=2=VP\left(dpcm\right)\)
\(a,2x^2+3x-9=0\\ \Leftrightarrow\left(2x^2+6x\right)-\left(3x+9\right)=0\\ \Leftrightarrow2x\left(x+3\right)-3\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{3}{2}\end{matrix}\right.\)
\(b,6x-12x^2=0\\ \Leftrightarrow6x\left(1-2x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(c,8x^2-1=0\\ \Leftrightarrow x^2=\dfrac{1}{8}\\ \Leftrightarrow x=\pm\dfrac{\sqrt{2}}{4}\)
\(d,x^4-7x^2-18=0\\ \Leftrightarrow\left(x^4-3x^3\right)+\left(3x^3-9x^2\right)+\left(2x^2-6x\right)+\left(6x-18\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x^3+3x^2+2x+6\right)=0\\ \Leftrightarrow\left(x-3\right)\left[x^2\left(x+3\right)+2\left(x+3\right)\right]=0\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x^2+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x^2=-2\left(vô.lí\right)\end{matrix}\right.\)