K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 3 2022

\(\left\{{}\begin{matrix}u_3=13\\u_5=23\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1+2d=13\\u_1+4d=23\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u_1=3\\d=5\end{matrix}\right.\)

NV
15 tháng 3 2022

Hàm \(f\left(x\right)\) ko xác định khi \(x+4=0\Rightarrow x=-4\)

\(\Rightarrow\) Hàm gián đoạn tại \(x=-4\)

NV
15 tháng 3 2022

\(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{x+5}-3}{x-4}=\lim\limits_{x\rightarrow4}\dfrac{\left(\sqrt{x+5}-3\right)\left(\sqrt{x+5}+3\right)}{\left(x-4\right)\left(\sqrt{x+5}+3\right)}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{x-4}{\left(x-4\right)\left(\sqrt{x+5}+3\right)}=\lim\limits_{x\rightarrow4}\dfrac{1}{\sqrt{x+5}+3}=\dfrac{1}{3+3}=\dfrac{1}{6}\)

4 tháng 5 2022

\(y=\dfrac{x-1}{x+2}\left(x\ne-2\right)\Rightarrow y'=\dfrac{\left(x+2\right)-\left(x-1\right)}{\left(x+2\right)^2}=\dfrac{3}{\left(x+2\right)^2}\)

Giả sử d là tiếp tuyến cần tìm của đths trên 

a. d đi qua \(N\left(-1;-2\right)\) . Suy ra : HSG của d : \(\dfrac{3}{\left(-1+2\right)^2}=3\)

PTTT d : \(y=3\left(x+1\right)-2=3x+1\)

b.d có hđtđ \(x_o=3\) \(\Rightarrow y_o=\dfrac{3-1}{3+2}=\dfrac{2}{5};y'=\dfrac{3}{25}\)

PTTT d : \(y=\dfrac{3}{25}\left(x-3\right)+\dfrac{2}{5}=\dfrac{3x}{25}+\dfrac{1}{25}\)

c. Tung độ tiếp điểm yo = 9 nên : \(\dfrac{x_o-1}{x_o+2}=9\Leftrightarrow x_o=-\dfrac{19}{8}\)

y' = 64/3

PTTT d : \(y=\dfrac{64}{3}\left(x+\dfrac{19}{8}\right)+9=\dfrac{64}{3}x+\dfrac{179}{3}\)

d. Ta có : \(\dfrac{3}{\left(x_o+2\right)^2}=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}x_o+2=3\\x_o+2=-3\end{matrix}\right.\)  \(\Leftrightarrow\left[{}\begin{matrix}x_o=1\\x_o=-5\end{matrix}\right.\)

Với xo = 1 \(\Rightarrow y_o=0\) . PTTT d : y = 1/3(x-1) = 1/3x - 1/3

Với xo = -5 \(\Rightarrow y_o=2\) . PTTT d : \(y=\dfrac{1}{3}\left(x+5\right)+2=\dfrac{1}{3}x+\dfrac{11}{3}\)

Chọn A

NV
10 tháng 3 2022

Theo tính chất hình lập phương, ta có:

\(C'D'\perp\left(BB'C'C\right)\Rightarrow C'D'\perp BC'\)

\(\Rightarrow\widehat{\left(C'D';BC'\right)}=90^0\)

NV
14 tháng 4 2022

\(\lim\limits_{x\rightarrow+\infty}\left(ax-\sqrt{x^2+bx+2}\right)=\lim\limits_{x\rightarrow+\infty}x\left(a-\sqrt{1+\dfrac{b}{x}+\dfrac{2}{x^2}}\right)\)

Nếu \(a\ne1\Rightarrow\lim\limits_{x\rightarrow+\infty}\left(a-\sqrt{1+\dfrac{b}{x}+\dfrac{2}{x^2}}\right)=a-1\ne0\)

\(\Rightarrow\lim\limits_{x\rightarrow+\infty}x\left(a-\sqrt{1+\dfrac{b}{x}+\dfrac{2}{x^2}}\right)=\infty\) ko thỏa mãn giả thiết \(=4\) (hữu hạn)

\(\Rightarrow a=1\)

\(\lim\limits_{x\rightarrow+\infty}\left(x-\sqrt{x^2+bx+2}\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{-bx-2}{x+\sqrt{x^2+bx+2}}=\lim\limits_{x\rightarrow+\infty}\dfrac{-b-\dfrac{2}{x}}{1+\sqrt{1+\dfrac{b}{x}+\dfrac{2}{x^2}}}=-\dfrac{b}{2}\)

\(\Rightarrow-\dfrac{b}{2}=4\Rightarrow b=-8\)

NV
29 tháng 3 2022

\(y'=\left(3x^2\right)'-\left(4x\right)'+9'\)

\(y'=6x-4\Rightarrow y'\left(1\right)=6.1-4=2\)

NV
15 tháng 3 2022

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{mx^2-\left(m+3\right)x+3}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(mx-3\right)}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\left(mx-3\right)=m-3\)

\(f\left(1\right)=m^2-15\)

Hàm liên tục tại \(x=1\) khi:

\(m-3=m^2-15\Rightarrow m^2-m-12=0\Rightarrow\left[{}\begin{matrix}m=4\\m=-3\end{matrix}\right.\)

\(4^2+\left(-3\right)^2=25\)

NV
5 tháng 4 2022

\(y'=3x^2-2\)

hệ số góc tiếp tuyến tại điểm có hoành độ \(x_0=-1\) là \(y'\left(-1\right)\)

\(y'\left(-1\right)=3.\left(-1\right)^2-2=1\)