Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm d1 và d2:
\(-3x-7=2x+3\)
\(\Rightarrow-5x=10\Rightarrow x=-2\)
Thế vào \(y=-3x-7=-3.\left(-2\right)-7=-1\)
Vậy \(M\left(-2;-1\right)\)
2: Để (d)//y=(m2+1)x-4 thì \(\left\{{}\begin{matrix}m^2=1\\m-5\ne-4\end{matrix}\right.\Leftrightarrow m=1\)
Mọi người giúp mình với mình đang cần gấp mình cảm ơn nhiều ạ
\(n=\sqrt{2}\left(\sqrt{3}+1\right)\sqrt{2-\sqrt{3}}\\ n=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}\\ n=\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3}-1\right)^2}\\ n=\left(\sqrt{3}+1\right)\left|\sqrt{3}-1\right|\\ n=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\\ n=3-1=2\)
\(26,\\ a,\sin45^0=\cos45^0< \sin50^025'< \sin57^048'=\cos32^012'< \sin72^0=\cos18^0< \sin75^0\\ b,\tan37^026'< \tan47^0< \tan58^0=\cot32^0< \tan63^0< \tan66^019'=\cot23^041'\\ 27,\\ A=\dfrac{\left(\sin^226^0+\sin^264^0\right)+2\left(\cos^215^0+\cos^275^0\right)}{\left(\sin^255^0+\cos^255^0\right)+\left(\sin^242^0+\cos^242^0\right)}-\dfrac{\tan81^0}{2\tan81^0}\\ A=\dfrac{\left(\sin^226^0+\cos^226^0\right)+2\left(\sin^215^0+\cos^215^0\right)}{1+1}-\dfrac{1}{2}\\ A=\dfrac{1+2}{2}-\dfrac{1}{2}=2-\dfrac{1}{2}=\dfrac{3}{2}\)
\(28,\\ \sin^2\alpha=1-\cos^2\alpha=1-\dfrac{1}{2}=\dfrac{1}{2}\\ \Leftrightarrow\sin\alpha=\dfrac{\sqrt{2}}{2}\)
Thay x=1 vào y=2x-3, ta được:
\(y=2\cdot1-3=-1\)
Thay x=1 và y=-1 vào (d), ta được:
\(m-3+4=-1\)
hay m=-2