Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 15
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a-b+c}{2-3+5}=\dfrac{-10.2}{4}=-2.55\)
Do đó: a=-5,1; b=-7,65; c=-12,75
10.
\(H\left(x\right)=-5x^4+10x^3-15x+1\)
\(=-5x\left(x^3-2x^2+3\right)+1\)
\(=-5x.0+1\)
\(=1\)
9.
\(P\left(x\right)-Q\left(x\right)=\left(1-a\right)x^3+x^2+x-6\)
\(P\left(x\right)-Q\left(x\right)\) là đa thức bậc 3 khi và chỉ khi \(1-a\ne0\)
\(\Rightarrow a\ne1\)
\(\dfrac{x}{y}=\dfrac{5}{2}\) ⇒\(\dfrac{x}{5}=\dfrac{y}{2}\)
\(\dfrac{y}{z}=\dfrac{1}{3}\) ⇒\(\dfrac{y}{1}=\dfrac{z}{3}\) ⇒\(\dfrac{y}{2}=\dfrac{z}{6}\)
⇒\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{6}\) ⇒\(\dfrac{x^2}{25}=\dfrac{y^2}{4}=\dfrac{2z^2}{72}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{25}=\dfrac{y^2}{4}=\dfrac{2z^2}{72}=\dfrac{x^2-y^2+2z^2}{25-4+72}=\dfrac{372}{93}=4\)
⇒\(\left\{{}\begin{matrix}x=4.5=20\\y=4.2=8\\z=4.6=24\end{matrix}\right.\)
Bài 4:
a: k=y/x=7/10
b: y=7/10x
c: Khi x=-6 thì y=-7/10*6=-42/10=-21/5
Khi x=1/7 thì y=1/7*7/10=1/10