Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a: 2x-(3-5x)=4(x+3)
=>2x-3+5x=4x+12
=>7x-3=4x+12
=>3x=15
=>x=5
b: =>5/3x-2/3+x=1+5/2-3/2x
=>25/6x=25/6
=>x=1
c: 3x-2=2x-3
=>3x-2x=-3+2
=>x=-1
d: =>2u+27=4u+27
=>u=0
e: =>5-x+6=12-8x
=>-x+11=12-8x
=>7x=1
=>x=1/7
f: =>-90+12x=-45+6x
=>12x-90=6x-45
=>6x-45=0
=>x=9/2
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)
CH=BC-BH=6,4(cm)
a: Xét ΔOAD và ΔOCB có
OA/OC=3/6=OD/OB=2/4
góc AOD chung
Do đó:ΔOAD∼ΔOCB
b: Ta có: ΔOAD∼ΔOCB
=>OA/OC=AD/BC
=>1/2=4/BC
=>BC=8(cm)
a: \(=5x^2-10x-5x^2+7x=-3x\)
b: \(=2x^3+3xy^2-4y-3xy^2=2x^3-4y\)
a: Xét tứ giác MBQC có
N la trung điểm chung của MQ và BC
=>MBQC là hình bình hành
b: Xet tứ giácc AMQC có
AM//QC
AM=QC
góc MAC=90 độ
=>AMQC là hình chữ nhật
c: Xét ΔBAC có
N là trung điểm của CB
NK//AB
=>K là trung điểm của AC
Xét ΔCAB có
AN,BK,CM là các trung tuyến
nên ba đường này sẽ đồng quy
=>B,H,K thẳng hàng
Bài 1:
a: =5(x+2y)
b: =(x+y)(5x-7)
Bài 2:
a: \(=\dfrac{1+2}{xy}=\dfrac{3}{xy}\)
a)
\(=\left(\dfrac{x}{x+3}-\dfrac{x^2+9}{\left(x-3\right)\left(x+3\right)}\right):\left(\dfrac{3x+1}{x\left(x-3\right)}-\dfrac{1}{x}\right)\)
\(=\left(\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2+9}{\left(x-3\right)\left(x+3\right)}\right):\left(\dfrac{3x+1}{x\left(x-3\right)}-\dfrac{x-3}{x\left(x-3\right)}\right)\)
\(=\left(\dfrac{x^2-3x-x^2-9}{\left(x+3\right)\left(x-3\right)}\right):\left(\dfrac{3x+1-x+3}{x\left(x-3\right)}\right)\)
\(=\dfrac{-3\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}:\dfrac{2x+4}{x\left(x-3\right)}\)
\(=\dfrac{-3}{\left(x-3\right)}\cdot\dfrac{x\left(x-3\right)}{2x+4}\\ =\dfrac{-3x}{2x+4}\)
b)
với `x=-1/2` (tmđk) ta có
\(\dfrac{-3\cdot\left(\dfrac{-1}{2}\right)}{2\cdot\left(-\dfrac{1}{2}\right)+4}=\dfrac{1}{2}\)
c)
để P=x thì
\(\dfrac{-3x}{2x+4}=x\)
\(=>-3x=\left(2x+4\right)\cdot x\)
\(-3x=2x^2+4x\)
\(2x^2+4x+3x=0\)
\(2x^2+7x=0\)
\(x\left(2x+7\right)=0\)
\(=>\left[{}\begin{matrix}x=0\\2x+7=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\left(loại\right)\\x=-\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)
d)
mik ko bt lm=)
\(15x^2y^5-10x^3y^4=5x^2y^4\left(3y-2x\right)\)
\(4x\left(x-2y\right)+7\left(2y-x\right)=4x\left(x-2y\right)-7\left(x-2y\right)=\left(x-2y\right)\left(4x-7\right)\)
\(5x^3+20x^2y+20xy^2=5x\left(x^2+4xy+4y^2\right)=5x\left(x+2y\right)^2\)
\(x^2-4y^2-2x+4y=\left(x-2y\right)\left(x+2y\right)-2\left(x-2y\right)=\left(x-2y\right)\left(x+2y-2\right)\)
Sau khi giảm \(15\%\) thì giá mới là \(500000-500000\cdot15\%=4250000\left(đồng\right)\)