Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A={(1;1); (1;2); ...; (1;6)}
=>n(A)=6
P(A)=6/36=1/6
b: B={(1;4); (2;3); (3;2); (4;1)}
=>P(B)=4/36=1/9
c: C={(3;1); (4;2); (5;3); (6;4)}
=>P(C)=4/36=1/9
d: D={(1;3); (1;5); (1;1); (3;5); (3;1); (3;3); (5;3); (5;1); (5;5)}
=>P(D)=9/36=1/4
Sửa đề: Xuất hiện mặt 2 chấm
n(A)=1
n(omega)=6
=>P(A)=1/6
a: n(omega)=36
A={(1;5); (2;5); (3;5); (4;5); (5;5); (6;5)}
=>n(A)=6
=>P(A)=6/36=1/6
b: B={(1;6); (2;5); (3;4); (4;3); (5;2); (6;1)}
=>n(B)=6
=>P(B)=1/6
d: D={(2;1); (2;2); ...; (2;6); (3;1); (3;2); ...;(3;6);(5;1); (5;2);...;(5;6)}
=>P(D)=18/36=1/2
\(\Omega=\left\{\left(i\right)|i=1,2,3,4,5,6\right\}\)
\(\Rightarrow n\left(\Omega\right)=6\)
Gọi \(A:``\) Xuất hiện trên hai mặt chấm\("\)
\(A=\left\{3,4,5,6\right\}\)
\(\Rightarrow n\left(A\right)=4\)
\(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{4}{6}=\dfrac{2}{3}\)
Không gian mẫu: Ω= {1;2;3;4;5;6} →n(Ω)=6
Gọi biến cố A:" Xuất hiện trên hai mặt chấm"
A ={3;4;5;6} ➝n(A)= 4
Do đó, p(A)=\(\dfrac{n\left(A\right)}{n\left(\Omega\right)}\)=\(\dfrac{4}{6}\)=\(\dfrac{2}{3}\)
Có thể là 2 lần chẵn 1 lần lẻ hoặc cả 3 lần đều chẵn
TH1: 2 chẵn, 1 lẻ
=>Có \(C^1_3\cdot C^1_3\cdot C^1_3=27\left(cách\right)\)
TH2: 3 lần đều chẵn
=>Có \(C^1_3\cdot C^1_3\cdot C^1_3=27\left(cách\right)\)
=>Có 27+27=54 cách
n(omega)=6*6*6=216
=>P=54/216=1/4