Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x + y -6 = 0 ⇔ y = - x + 6
Hoành độ giao điểm của parabol (P) và đường thẳng (d) là nghiệm của phương trình
x2 – 2x + 5 = -x + 6
⇔ x 2 - x - 1 = 0 ⇔ x = 1 ± 5 2
Vậy hoành độ giao điểm của (P) và (d) là: x = 1 ± 5 2
Do tọa độ của A là thỏa mãn phương trình của d nên A nằm trên đường thẳng d
Lại có; vectơ B C → ( 3 ; 1 ) là vectơ pháp tuyến của d.
Do đó d là đường thẳng chứa đường cao của tam giác ABC vẽ từ A.
Chọn A.
a: Vì (d) đi qua A(3;-4) và (0;2) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}3a+b=-4\\b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\)
b: vì (d)//y=-4x+4 nên a=-4
Vậy:(d): y=-4x+b
Thay x=-2 và y=0 vào (d), ta được:
b+8=0
hay b=-8
Hướng dẫn. Hoành độ giao điểm của parabol và đường thẳng đã cho là nghiệm của phương trình: x 2 + 4 x – 6 = 2 x + 2
⇔ x 1 = - 4 ; x 2 = 2
Đáp án: D