Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
ĐKXĐ: \(x\ge\dfrac{1}{2}\)
Ta có: \(\sqrt{5x^2}=2x-1\)
\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)
\(\Leftrightarrow5x^2-4x^2+4x-1=0\)
\(\Leftrightarrow x^2+4x-1=0\)
\(\text{Δ}=4^2-4\cdot1\cdot\left(-1\right)=20\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-4-2\sqrt{5}}{2}=-2-\sqrt{5}\left(loại\right)\\x_2=\dfrac{-4+2\sqrt{5}}{2}=-2+\sqrt{5}\left(loại\right)\end{matrix}\right.\)
Bài 1: Bình phương hai vế lên có giải ra được kết quả. Nhưng phải kèm thêm điều kiện $2x-1\geq 0$ do $\sqrt{5x^2}\geq 0$
PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 5x^2=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x^2+4x-1=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2)^2-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2-\sqrt{5})(x+2+\sqrt{5})=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x=-2\pm \sqrt{5}\end{matrix}\right.\) (vô lý)
Vậy pt vô nghiệm.
`a(a+6)+10>0`
`<=>a^2+6a+10>0`
`<=>a^2+6a+9+1>0`
`<=>(a+3)^2+1>0` luôn đúng
c1 : x luôn lớn hơn không trong phương trình trên nên pt trên vô nghiệm
Bài 2:
Xét ΔABC vuông tại C có
\(CB=BA\cdot\sin60^0=12\cdot\dfrac{\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\)
\(=\frac{25}{4}-\left(x-\frac{1}{2}\right)^2\) xuống lớp 7 học đi nhé
GTLN \(-x^2\)+\(x\)+\(6\)=\(-\left(x^2-x-6\right)\)
=\(-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}-6\right)\)=\(-\left(x-\frac{1}{2}\right)^2-\frac{25}{4}\)
=\(\left(x-\frac{1}{2}\right)^2+\frac{25}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\)\(\ge\)\(0\)Nên \(\left(x-\frac{1}{2}\right)^2+\frac{25}{4}\)\(\ge0\)
Vậy GTLN của biểu thức là \(\frac{25}{4}\)khi \(x=\frac{1}{2}\)
Bài 4:
b: Xét ΔABK vuông tại A có AD là đường cao ứng với cạnh huyền BK
nên \(BD\cdot BK=BA^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot BC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BD\cdot BK=BH\cdot BC\)
Bài 1:
Vì (d)//y=-2x+1 nên a=-2
Vậy: y=-2x+b
Thay x=1 và y=2 vào (d),ta được:
b-2=2
hay b=4
Ta có : y = 1 + 1 = 2
Để hs y = (m-1)x + m bậc nhất khi m khác 1
Vậy y = (m-1)x + m cắt y =x+1 tại A(1;2)
<=> 2 = m-1+m <=> 2m = 3 <=> m = 3/2 (tm)
1) Ta có: \(x-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
2) Ta có: \(6+\sqrt{x}-x=0\)
\(\Leftrightarrow x-\sqrt{x}-6=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=0\)
\(\Leftrightarrow\sqrt{x}-3=0\)
\(\Leftrightarrow x=9\)
3) Ta có: \(x+3\sqrt{x}-4=0\)
\(\Leftrightarrow\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\sqrt{x}-1=0\)
\(\Leftrightarrow x=1\)