K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Ta có: \(x-2\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

2) Ta có: \(6+\sqrt{x}-x=0\)

\(\Leftrightarrow x-\sqrt{x}-6=0\)

\(\Leftrightarrow\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=0\)

\(\Leftrightarrow\sqrt{x}-3=0\)

\(\Leftrightarrow x=9\)

3) Ta có: \(x+3\sqrt{x}-4=0\)

\(\Leftrightarrow\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\sqrt{x}-1=0\)

\(\Leftrightarrow x=1\)

Mọi người chỉ mình ạ! Bài 1: giải phương trình \(\sqrt{5x^2}=2x-1\)* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé * Với nhưng dạng thế nào thì có thể bình phương ạ! Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. * Nó...
Đọc tiếp

Mọi người chỉ mình ạ! 

Bài 1: giải phương trình 

\(\sqrt{5x^2}=2x-1\)

* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé 

* Với nhưng dạng thế nào thì có thể bình phương ạ! 

Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. 

* Nó có phụ thuộc vào dạng bài không ạ hay là chỉ có những bài mới được làm như vậy còn chỉ có những bài thì phải tìm điều kiện ngay từ đầu ạ ( và làm như vậy có bị mất trường hợp nào đi không) . giải thích tại sao 

Bài 3: 

Ví dụ: \(x^2\ge2x\) . 

* Tại sao khi mà chia cả hai vế cho x thì chỉ nhân 1 trường hợp ( bị thiếu trường hợp). Còn khi mà chuyển vế sang cho lớn hơn hoặc bằng 0 thì lại đủ trường hợp. giải thích mình tại sao lại bị thiếu và đủ trường hợp ạ! 

Giups mình đầy đủ chỗ (*) nhá! 

5

Bài 1: 

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

Ta có: \(\sqrt{5x^2}=2x-1\)

\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)

\(\Leftrightarrow5x^2-4x^2+4x-1=0\)

\(\Leftrightarrow x^2+4x-1=0\)

\(\text{Δ}=4^2-4\cdot1\cdot\left(-1\right)=20\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-4-2\sqrt{5}}{2}=-2-\sqrt{5}\left(loại\right)\\x_2=\dfrac{-4+2\sqrt{5}}{2}=-2+\sqrt{5}\left(loại\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

Bài 1: Bình phương hai vế lên có giải ra được kết quả. Nhưng phải kèm thêm điều kiện $2x-1\geq 0$ do $\sqrt{5x^2}\geq 0$

PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 5x^2=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x^2+4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2)^2-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2-\sqrt{5})(x+2+\sqrt{5})=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x=-2\pm \sqrt{5}\end{matrix}\right.\) (vô lý)

Vậy pt vô nghiệm.

25 tháng 6 2021

`a(a+6)+10>0`

`<=>a^2+6a+10>0`

`<=>a^2+6a+9+1>0`

`<=>(a+3)^2+1>0` luôn đúng

1 tháng 4 2022

c1 : x luôn lớn hơn không trong phương trình trên nên pt trên vô nghiệm

24 tháng 8 2019

\(A=\sqrt{2\sqrt{5}+6}-\sqrt{\left(\sqrt{5}-1\right)^2}+2018=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}+2019=2020\)

Ma \(2020\in Z\)

Suy ra:\(A\in Z\)

Bài 2:

Xét ΔABC vuông tại C có

\(CB=BA\cdot\sin60^0=12\cdot\dfrac{\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\)

26 tháng 5 2017

\(=\frac{25}{4}-\left(x-\frac{1}{2}\right)^2\) xuống lớp 7 học đi nhé

26 tháng 5 2017

GTLN \(-x^2\)+\(x\)+\(6\)=\(-\left(x^2-x-6\right)\)

=\(-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}-6\right)\)=\(-\left(x-\frac{1}{2}\right)^2-\frac{25}{4}\)

=\(\left(x-\frac{1}{2}\right)^2+\frac{25}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\)\(\ge\)\(0\)Nên \(\left(x-\frac{1}{2}\right)^2+\frac{25}{4}\)\(\ge0\)

Vậy GTLN của biểu thức là \(\frac{25}{4}\)khi \(x=\frac{1}{2}\)

14 tháng 10 2021

Bài 4: 

b: Xét ΔABK vuông tại A có AD là đường cao ứng với cạnh huyền BK

nên \(BD\cdot BK=BA^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BD\cdot BK=BH\cdot BC\)

14 tháng 10 2021

em cảm ơn ạ nhưng mà e cần CM câu c chứ ko phải là câu b ạ

Bài 1: 

Vì (d)//y=-2x+1 nên a=-2

Vậy: y=-2x+b

Thay x=1 và y=2 vào (d),ta được:

b-2=2

hay b=4

Thay x=1 và y=2 vào (d),ta được:

m-1+m=2

hay m=3/2

24 tháng 1 2022

Ta có : y = 1 + 1 = 2 

Để hs y = (m-1)x + m bậc nhất khi m khác 1 

Vậy y = (m-1)x + m cắt y =x+1 tại A(1;2) 

<=> 2 = m-1+m <=> 2m = 3 <=> m = 3/2 (tm)