K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2019

(2m + 1)x – 2m = 3x – 2

⇔ (2m + 1)x – 3x = 2m – 2

⇔ (2m + 1 – 3).x = 2m – 2

⇔ (2m – 2).x = 2m – 2 (3)

     + Xét 2m – 2 ≠ 0 ⇔ m ≠ 1, pt (3) có nghiệm duy nhất Giải bài 2 trang 62 sgk Đại số 10 | Để học tốt Toán 10

     + Xét 2m – 2 = 0 ⇔ m = 1, pt (3) ⇔ 0.x = 0, phương trình có vô số nghiệm.

Kết luận :

+ Với m = 1, phương trình có vô số nghiệm

+ Với m ≠ 1, phương trình có nghiệm duy nhất x = 1.

28 tháng 5 2018

Với Giải sách bài tập Toán 10 | Giải sbt Toán 10 phương trình đã cho trở thành

    3x + 2m = x - m ⇔ 2x = -3m ⇔ x = -3m / 2

 Ta có:

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Với Giải sách bài tập Toán 10 | Giải sbt Toán 10 Phương trình đã cho trở thành

    -3x - 2m = x - m ⇔ 4x = -m ⇔ x = -m / 4

    Ta có:

  Giải sách bài tập Toán 10 | Giải sbt Toán 10

Kết luận

    Với m > 0 phương trình vô nghiệm;

    Với m = 0 phương trình có nghiệm x = 0;

    Với m < 0 phương trình có nghiệm

Giải sách bài tập Toán 10 | Giải sbt Toán 10

23 tháng 1 2017

m = 0 phương trình trở thành

    -x - 2 = 0 ⇒ x = -2

    m ≠ 0 phương trình đã cho là phương trình bậc hai, có Δ = 4m + 1

    Với m < -1/4 phương trình vô nghiệm;

    Với m ≥ -1/4 nghiệm của phương trình là

Giải sách bài tập Toán 10 | Giải sbt Toán 10

8 tháng 2 2019

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Phương trình (1) ⇔ x = -3m + 2

    Phương trình (2) ⇔ 3x = m - 2 ⇔ x = (m - 2) / 3

    Vậy với mọi giá trị của m phương trình có nghiệm là:

     x 1  = -3m + 2 và x 2  = (m - 2) / 3

2 tháng 4 2017

a) ⇔ (m – 3)x = 2m + 1.

  • Nếu m ≠ 3 phương trình có nghiệm duy nhất x = .
  • Nếu m = 3 phương trình trở thành 0x = 7. Vô nghiệm.

b) ⇔ (m2 – 4)x = 3m – 6.

  • Nếu m2 – 4 ≠ 0 ⇔ m ≠ ± 2, có nghiệm x = .
  • Nếu m = 2, phương trình trở thành 0x = 0, mọi x ∈ R đều nghiệm đúng phương trình.
  • Nếu m = -2, phương trình trở thành 0x = -12. Vô nghiệm.

c) ⇔ 2(m – 1)x = 2(m-1).

  • Nếu m ≠ 1 có nghiệm duy nhất x = 1.
  • Nếu m = 1 mọi x ∈ R đều là nghiệm của phương trình.


21 tháng 9 2017

m(x – 2) = 3x + 1

⇔ mx – 2m = 3x + 1

⇔ mx – 3x = 1 + 2m

⇔ (m – 3).x = 1 + 2m (1)

     + Xét m – 3 ≠ 0 ⇔ m ≠ 3, phương trình (1) có nghiệm duy nhất Giải bài 2 trang 62 sgk Đại số 10 | Để học tốt Toán 10

     + Xét m – 3 = 0 ⇔ m = 3, pt (1) ⇔ 0x = 7. Phương trình vô nghiệm.

Kết luận:

+ với m = 3, phương trình vô nghiệm

+ với m ≠ 3, phương trình có nghiệm duy nhất Giải bài 2 trang 62 sgk Đại số 10 | Để học tốt Toán 10

30 tháng 3 2017

a) ⇔ (m – 3)x = 2m + 1.

Nếu m ≠ 3 phương trình có nghiệm duy nhất x = .
Nếu m = 3 phương trình trở thành 0x = 7. Vô nghiệm.
b) ⇔ (m2 – 4)x = 3m – 6.

Nếu m2 – 4 ≠ 0 ⇔ m ≠ ± 2, có nghiệm x = .
Nếu m = 2, phương trình trở thành 0x = 0, mọi x ∈ R đều nghiệm đúng phương trình.
Nếu m = -2, phương trình trở thành 0x = -12. Vô nghiệm.
c) ⇔ 2(m – 1)x = 2(m-1).

Nếu m ≠ 1 có nghiệm duy nhất x = 1.

14 tháng 4 2017

Lời giải

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m\left(1\right)\\\left(3x+2m\right)^2=\left(x-m\right)^2\left(2\right)\end{matrix}\right.\)

(2)\(\Leftrightarrow9x^2+12xm+4m^2=x^2-2mx+m^2\)

\(\Leftrightarrow8x^2+14mx+3m^2=0\)

\(\Delta'_x=49m^2-24m^2=25m^2\ge0\forall m\) => (2) luôn có nghiệm với mợi m

\(x=\dfrac{5\left|m\right|-7m}{8}\) (3)

so sánh (3) với (1)

\(\dfrac{5\left|m\right|-7m}{8}\ge m\Leftrightarrow\left|m\right|\ge3m\)(4)

m <0 hiển nhiên đúng

xét khi m\(\ge\)0

\(\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^2\ge9m^2\end{matrix}\right.\)\(\Rightarrow m\le0\)\(\Leftrightarrow m=0\)

Biện luận

(I)với m <0 có hai nghiệm

\(\left\{{}\begin{matrix}x_1=\dfrac{-3m}{2}\\x_2=\dfrac{-m}{4}\end{matrix}\right.\)

(II) với m= 0 có nghiệm kép x=0

(III) m>0 vô nghiệm

 

 

3 tháng 5 2017

b) \(\left|2x+m\right|=\left|x-2m+2\right|\Leftrightarrow\left[{}\begin{matrix}2x+m=x-2m+2\left(1\right)\\2x+m=-\left(x-2m+2\right)\left(2\right)\end{matrix}\right.\)
Xét (1): \(2x+m=x-2m+2\Leftrightarrow x=-3m+2\).
Xét (2): \(2x+m=-\left(x-2m+2\right)\Leftrightarrow x=\dfrac{m-2}{3}\)
Biện luận:
Với mọi m phương trình đều có hai nghiệm:
\(x=-3m+2;x=\dfrac{m-2}{3}\).

b: Để phương trình vô nghiệm thì x-2=0

hay x=2

Để phương trình có nghiệm thì x-2<>0

hay x<>2

11 tháng 12 2018

 Điều kiện của phương trình là m ≠ 1/2. Khi đó ta có

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Nếu m ≠ -1/5 thì phương trình có nghiệm Giải sách bài tập Toán 10 | Giải sbt Toán 10

    Giá trị này là nghiệm của phương trình đã cho khi

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Nếu m = -1/5 phương trình cuối vô nghiệm.

    Kết luận.

    Với m = -1/5 hoặc m = -3 phương trình đã cho vô nghiệm.

    Với m ≠ -1/5 và m ≠ -3 nghiệm của phương trình đã cho là 

Giải sách bài tập Toán 10 | Giải sbt Toán 10