Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với phương trình đã cho trở thành
3x + 2m = x - m ⇔ 2x = -3m ⇔ x = -3m / 2
Ta có:
Với Phương trình đã cho trở thành
-3x - 2m = x - m ⇔ 4x = -m ⇔ x = -m / 4
Ta có:
Kết luận
Với m > 0 phương trình vô nghiệm;
Với m = 0 phương trình có nghiệm x = 0;
Với m < 0 phương trình có nghiệm
m = 0 phương trình trở thành
-x - 2 = 0 ⇒ x = -2
m ≠ 0 phương trình đã cho là phương trình bậc hai, có Δ = 4m + 1
Với m < -1/4 phương trình vô nghiệm;
Với m ≥ -1/4 nghiệm của phương trình là
Phương trình (1) ⇔ x = -3m + 2
Phương trình (2) ⇔ 3x = m - 2 ⇔ x = (m - 2) / 3
Vậy với mọi giá trị của m phương trình có nghiệm là:
x 1 = -3m + 2 và x 2 = (m - 2) / 3
a) ⇔ (m – 3)x = 2m + 1.
- Nếu m ≠ 3 phương trình có nghiệm duy nhất x = .
- Nếu m = 3 phương trình trở thành 0x = 7. Vô nghiệm.
b) ⇔ (m2 – 4)x = 3m – 6.
- Nếu m2 – 4 ≠ 0 ⇔ m ≠ ± 2, có nghiệm x = .
- Nếu m = 2, phương trình trở thành 0x = 0, mọi x ∈ R đều nghiệm đúng phương trình.
- Nếu m = -2, phương trình trở thành 0x = -12. Vô nghiệm.
c) ⇔ 2(m – 1)x = 2(m-1).
- Nếu m ≠ 1 có nghiệm duy nhất x = 1.
- Nếu m = 1 mọi x ∈ R đều là nghiệm của phương trình.
m(x – 2) = 3x + 1
⇔ mx – 2m = 3x + 1
⇔ mx – 3x = 1 + 2m
⇔ (m – 3).x = 1 + 2m (1)
+ Xét m – 3 ≠ 0 ⇔ m ≠ 3, phương trình (1) có nghiệm duy nhất
+ Xét m – 3 = 0 ⇔ m = 3, pt (1) ⇔ 0x = 7. Phương trình vô nghiệm.
Kết luận:
+ với m = 3, phương trình vô nghiệm
+ với m ≠ 3, phương trình có nghiệm duy nhất
a) ⇔ (m – 3)x = 2m + 1.
Nếu m ≠ 3 phương trình có nghiệm duy nhất x = .
Nếu m = 3 phương trình trở thành 0x = 7. Vô nghiệm.
b) ⇔ (m2 – 4)x = 3m – 6.
Nếu m2 – 4 ≠ 0 ⇔ m ≠ ± 2, có nghiệm x = .
Nếu m = 2, phương trình trở thành 0x = 0, mọi x ∈ R đều nghiệm đúng phương trình.
Nếu m = -2, phương trình trở thành 0x = -12. Vô nghiệm.
c) ⇔ 2(m – 1)x = 2(m-1).
Nếu m ≠ 1 có nghiệm duy nhất x = 1.
Lời giải
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m\left(1\right)\\\left(3x+2m\right)^2=\left(x-m\right)^2\left(2\right)\end{matrix}\right.\)
(2)\(\Leftrightarrow9x^2+12xm+4m^2=x^2-2mx+m^2\)
\(\Leftrightarrow8x^2+14mx+3m^2=0\)
\(\Delta'_x=49m^2-24m^2=25m^2\ge0\forall m\) => (2) luôn có nghiệm với mợi m
\(x=\dfrac{5\left|m\right|-7m}{8}\) (3)
so sánh (3) với (1)
\(\dfrac{5\left|m\right|-7m}{8}\ge m\Leftrightarrow\left|m\right|\ge3m\)(4)
m <0 hiển nhiên đúng
xét khi m\(\ge\)0
\(\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^2\ge9m^2\end{matrix}\right.\)\(\Rightarrow m\le0\)\(\Leftrightarrow m=0\)
Biện luận
(I)với m <0 có hai nghiệm
\(\left\{{}\begin{matrix}x_1=\dfrac{-3m}{2}\\x_2=\dfrac{-m}{4}\end{matrix}\right.\)
(II) với m= 0 có nghiệm kép x=0
(III) m>0 vô nghiệm
b) \(\left|2x+m\right|=\left|x-2m+2\right|\Leftrightarrow\left[{}\begin{matrix}2x+m=x-2m+2\left(1\right)\\2x+m=-\left(x-2m+2\right)\left(2\right)\end{matrix}\right.\)
Xét (1): \(2x+m=x-2m+2\Leftrightarrow x=-3m+2\).
Xét (2): \(2x+m=-\left(x-2m+2\right)\Leftrightarrow x=\dfrac{m-2}{3}\)
Biện luận:
Với mọi m phương trình đều có hai nghiệm:
\(x=-3m+2;x=\dfrac{m-2}{3}\).
Bài 1: Giải và biện luận các phương trình sau theo tham số m a) 2mx + 3 = m - x b) m(x - 2) = 3x + 1
b: Để phương trình vô nghiệm thì x-2=0
hay x=2
Để phương trình có nghiệm thì x-2<>0
hay x<>2
Điều kiện của phương trình là m ≠ 1/2. Khi đó ta có
Nếu m ≠ -1/5 thì phương trình có nghiệm
Giá trị này là nghiệm của phương trình đã cho khi
Nếu m = -1/5 phương trình cuối vô nghiệm.
Kết luận.
Với m = -1/5 hoặc m = -3 phương trình đã cho vô nghiệm.
Với m ≠ -1/5 và m ≠ -3 nghiệm của phương trình đã cho là
(2m + 1)x – 2m = 3x – 2
⇔ (2m + 1)x – 3x = 2m – 2
⇔ (2m + 1 – 3).x = 2m – 2
⇔ (2m – 2).x = 2m – 2 (3)
+ Xét 2m – 2 ≠ 0 ⇔ m ≠ 1, pt (3) có nghiệm duy nhất
+ Xét 2m – 2 = 0 ⇔ m = 1, pt (3) ⇔ 0.x = 0, phương trình có vô số nghiệm.
Kết luận :
+ Với m = 1, phương trình có vô số nghiệm
+ Với m ≠ 1, phương trình có nghiệm duy nhất x = 1.