Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk:\(x\ge0\)
\(\sqrt{x+3}+\sqrt{3x+1}=2\sqrt{x}+\sqrt{2x+2}\)
\(pt\Leftrightarrow\sqrt{x+3}-2+\sqrt{3x+1}-2=2\sqrt{x}-2+\sqrt{2x+2}-2\)
\(\Leftrightarrow\frac{x+3-4}{\sqrt{x+3}+2}+\frac{3x+1-4}{\sqrt{3x+1}-2}=\frac{4x-4}{2\sqrt{x}+2}+\frac{2x+2-4}{\sqrt{2x+2}+2}\)
\(\Leftrightarrow\frac{x-1}{\sqrt{x+3}+2}+\frac{3x-3}{\sqrt{3x+1}-2}=\frac{4x-4}{2\sqrt{x}+2}+\frac{2x-2}{\sqrt{2x+2}+2}\)
\(\Leftrightarrow\frac{x-1}{\sqrt{x+3}+2}+\frac{3\left(x-1\right)}{\sqrt{3x+1}-2}-\frac{4\left(x-1\right)}{2\sqrt{x}+2}-\frac{2\left(x-1\right)}{\sqrt{2x+2}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt{x+3}+2}+\frac{3}{\sqrt{3x+1}-2}-\frac{4}{2\sqrt{x}+2}-\frac{2}{\sqrt{2x+2}+2}\right)=0\)
Dễ thấy: \(\frac{1}{\sqrt{x+3}+2}+\frac{3}{\sqrt{3x+1}-2}-\frac{4}{2\sqrt{x}+2}-\frac{2}{\sqrt{2x+2}+2}>0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
`A=sqrt{x-2}+sqrt{6-x}(2<=x<=6)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{x-2+6-x}=2`
Dấu "=" `<=>x=2` hoặc `x=6`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(x-2+6-x)}=2sqrt2`
Dấu "=" `<=>x=4`
`C=sqrt{1+x}+sqrt{8-x}(-1<=x<=8)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{1+x+8-x}=3`
Dấu "=" `<=>x=-1` hoặc `x=8`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(1+x+8-x)}=3sqrt2`
Dấu "=" `<=>x=7/2`
`D=2sqrt{x+5}+sqrt{1-2x}(-5<=x<=1/2)`
`=sqrt{4x+20}+sqrt{1-2x}`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>D>=sqrt{4x+20+1-2x}=sqrt{2x+21}`
Mà `x>=-5`
`=>D>=sqrt{-10+21}=sqrt{11}`
Dấu "=" `<=>x=-5`
Em nên chèn bằng công thức nhé, chứ em viết thế này cô không hiểu đúng đề bài em cần được để trợ giúp em đâu
8/căn(x-1)+2căn(x-1)>=8 (BDDT cosi )
9/căn(y-1)+căn(y-1)>=6
=>VT>=VP
dấu = xảy ra khi x=17 và y= 82
giải cho kĩ đi