K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

\(\left(6x+5\right)^2\left(3x+2\right)\left(x+1\right)=1\)

<=> \(\left(36x^2+60x+25\right)\left(3x^2+5x+2\right)=1\)

đặt \(3x^2+5x+2=a\)

=> a(12a+1)=1 <=> 12a^2 + a -1=0 <=> (4a-1)(3a+1)=0

nên a=1/4 hoặc a=-1/3

sau đó bạn giải tiếp

chỉ cần tìm nghiệm trên máy tính là đc.

chúc bạn học giỏi

24 tháng 4 2016

(6x + 5)2(3x + 2)(x + 1) = 1

<=>(6x + 5)2(6x+4)(6x+6)=12

<=>(6x + 5)2((6x + 5)- 1)=12

Bạn đặt ẩn phụ 6x+5 là y, ta có: y2(y2 - 1)=12

Giải y xong rồi tìm x

Tích mik nhé!

15 tháng 1 2018

\(\Leftrightarrow9x^2-6x+1-10x-5+12x^2+6x-6x-3=x-1\)

\(\Leftrightarrow21x^2-17x-6=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1,075\\x=-0,266\end{cases}}\)

1 tháng 4 2018

huyền thoại đêm trăng cho mình hỏi tại sao bạn biết nhân 6 và 2 vào vậy

19 tháng 7 2016

|x+5|=2-3x

Th1: x+5 = 2-3x

4x = -3

x= -3/4

Th2: x+5 = -2 + 3x

-2x = -7

x= 7/2

Vậy x= -3/4 ; y = 7/2 

1 tháng 3 2022

\(N=\left(x^2+9x+1\right)^2-6\left(3x-1\right)\left(x^2+9x+1\right)+9\left(3x-1\right)^2\)

\(=\left(x^2+9x+1-9x+3\right)^2=\left(x^2+4\right)^2\)

6 tháng 3 2020

a) \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(\Leftrightarrow\left(3x-2\right)\left[\left(3x\right)^2+3x\cdot2+2^2\right]-\left(3x-1\right)\left[\left(3x\right)^2+3x\cdot1+1\right]=x-4\)

\(\Leftrightarrow\left(3x\right)^3-2^3-\left[\left(3x\right)^3-1\right]=x-4\)

\(\Leftrightarrow x=-3\) ( thỏa mãn )

P/s : Đề câu b) viết lại nhé, mình không hiểu lắm :))

6 tháng 3 2020

\(9\left(2x+1\right)=4\left(x-5\right)^2\)

\(\Leftrightarrow18x+9=4\left(x^2-10x+25\right)\)

\(\Leftrightarrow18x+9=4x^2-40x+100\)

\(\Leftrightarrow4x^2-58x+91=0\)

Ta có \(\Delta=58^2-4.4.91=1908,\sqrt{\Delta}=6\sqrt{53}\)

\(\Rightarrow x=\frac{58\pm6\sqrt{53}}{8}\)

13 tháng 3 2023

2x³ + 3x² + 6x + 5 = 0

⇔ 2x³ + 2x² + x² + x + 5x + 5 = 0

⇔ (2x³ + 2x²) + (x² + x) + (5x + 5) = 0

⇔ 2x²(x + 1) + x(x + 1) + 5(x + 1) = 0

⇔ (x + 1)(2x² + x + 5) = 0

⇔ (x + 1)[2(x² + 2.x.1/4 + 1/16) + 79/16] = 0

⇔ (x + 1)[(2(x + 1/4)² + 79/16] = 0

⇔ x + 1 = 0 (do 2(x + 1/4)² + 79/16 > 0 với mọi x)

⇔ x = -1

Vậy S = {-1}