Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>2x^2-4x+1=x^2+x+5
=>x^2-5x-4=0
=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)
b: =>11x^2-14x-12=3x^2+4x-7
=>8x^2-18x-5=0
=>x=5/2 hoặc x=-1/4
\(\sqrt{4x-5}=1-2x\)
Điều kiện: \(4x-5\) ≥ \(0\) ⇔ \(x\) ≥ \(\dfrac{5}{4}\)
PT ⇔ \(4x-5=\left(1-2x\right)^2\)
⇔ \(4x-5=1-4x+4x^2\)
⇔ \(4x^2-8x+6=0\)
⇔ Phương trình vô nghiệm
\(\left|5x^2-11\right|=x-5\)
TH1: \(5x^2-11=x-5\)
⇔ \(5x^2-x-6=0\)
⇔ \(\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=-1\end{matrix}\right.\) (Loại)
TH2: \(5x^2-11=-x+5\)
⇔ \(5x^2+x-16=0\)
⇔ \(\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{321}}{10}\\x=\dfrac{-1-\sqrt{321}}{10}\end{matrix}\right.\)(Thỏa mãn)
Vậy \(x=\dfrac{-1+\sqrt{321}}{10}\) và \(x=\dfrac{-1-\sqrt{321}}{10}\) là 2 nghiệm của phương trình.
\(x^4-3x^2-28=0\)
Đặt: \(t=x^2\) (\(t\) ≥ \(0\))
Ta được: \(t^2-3t-28=0\)
⇔ \(\left[{}\begin{matrix}t=7\\t=-4\end{matrix}\right.\)
Với \(t=7\) ⇒ \(x^2=7\)
⇔ \(\left[{}\begin{matrix}x=\sqrt{7}\\x=-\sqrt{7}\end{matrix}\right.\)
Vậy \(x=\sqrt{7}\) và \(x=-\sqrt{7}\) là nghiệm của phương trình.
a/ Bạn tự giải
b/ \(\Delta'=\left(m+2\right)^2-\left(m+1\right)=m^2+3m+3=\left(m+\frac{3}{2}\right)^2+\frac{3}{4}>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m
c/ Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+4\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1\left(1-2x_2\right)+x_2\left(1-2x_1\right)=m^2\)
\(\Leftrightarrow x_1+x_2-4x_1x_2=m^2\)
\(\Leftrightarrow2m+4-4\left(m+1\right)=m^2\)
\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)