K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

bắng 1/3 nhé bạn

1 tháng 8 2016

cậu giải ra giúp mk đi

13 tháng 8 2016

Điều kiện xác định : \(\hept{\begin{cases}2\ge\frac{1}{\sqrt{2-x}}\\x< 2\\x\ge0\end{cases}}\) \(\Leftrightarrow0\le x\le\frac{7}{4}\)

Ta có : \(\sqrt{2-\frac{1}{\sqrt{2-x}}}=x\)

\(\Rightarrow2-\frac{1}{\sqrt{2-x}}=x^2\)

\(\Leftrightarrow x^2\sqrt{2-x}-2\sqrt{2-x}+1=0\)

Đặt \(t=\sqrt{2-x},t\ge0\Rightarrow x=2-t^2\)

Ta có : \(\left(2-t^2\right)^2.t-2t+1=0\)

\(\Leftrightarrow t\left[\left(2-t^2\right)^2-1\right]-\left(t-1\right)=0\)

\(\Leftrightarrow t\left(2-t^2-1\right)\left(2-t^2+1\right)-\left(t-1\right)=0\)

\(\Leftrightarrow t\left(t-1\right)\left(t+1\right)\left(t^2-3\right)-\left(t-1\right)=0\)

\(\Leftrightarrow\left(t-1\right)\left[t\left(t+1\right)\left(t^2-3\right)-1\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-1=0\\t\left(t+1\right)\left(t^2-3\right)-1=0\end{cases}}\)

  • Nếu t - 1 = 0 => t = 1 ta có  \(x=2-1^2=1\)(tmđk)
  • Nếu \(t\left(t+1\right)\left(t^2-3\right)-1=0\) , từ điều kiện \(0\le x\le\frac{7}{4}\)ta có \(t\left(t+1\right)\left(t^2-3\right)-1\le-\frac{179}{256}< 0\)=> pt này vô nghiệm.

Vậy pt có nghiệm x = 1

13 tháng 8 2016

toán mấy ạ

23 tháng 11 2018

olm còn lỗi nên ko trình bày bth đc, bn tự viết lại nhá :)) 

\(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}=\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(\sqrt{x+3}+\sqrt{x+2}\right)\left(\sqrt{x+3}-\sqrt{x+2}\right)}\)

\(\frac{1}{\sqrt{x+2}+\sqrt{x+1}}=\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(\sqrt{x+2}+\sqrt{x+1}\right)\left(\sqrt{x+2}-\sqrt{x+1}\right)}\)

\(\frac{1}{\sqrt{x+1}+\sqrt{x}}=\frac{\sqrt{x+1}-\sqrt{x}}{\left(\sqrt{x+1}+\sqrt{x}\right)\left(\sqrt{x+1}-\sqrt{x}\right)}\)

\(VT=\sqrt{x+3}-\sqrt{x+2}+\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+1}-\sqrt{x}\)

\(VT=\sqrt{x+3}-\sqrt{x}=1\)

Dễ r -,- 

29 tháng 8 2019

\(DK:x\ge0\)

\(\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+1}}{x-x-1}+\frac{\sqrt{x+1}-\sqrt{x+2}}{x+1-x-2}+\frac{\sqrt{x+2}-\sqrt{x+3}}{x+2-x-3}=1\)

\(\Leftrightarrow-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+2}+\sqrt{x+3}=1\)

\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x+3}=1+\sqrt{x}\)

\(\Leftrightarrow x+3=x+2\sqrt{x}+1\)

\(\Leftrightarrow x=1\)

Vay nghiem cua PT la \(x=1\)

9 tháng 9 2017

đk tự giải nhé 

với x tjỏa mãn đk ta có 

\(\sqrt{\frac{x^2+3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\Leftrightarrow\sqrt{x^3+3}=\frac{x^3+7x}{2\left(x+1\right)}\)

\(\Leftrightarrow\sqrt{x^3+3x}=\frac{x^3+3x+4x}{2\left(x+1\right)}\)

đặt \(\sqrt{x^3+3x}=a\)

ta có pt<=> \(a=\frac{a^2+4x}{2\left(x+1\right)}\Leftrightarrow2a\left(x+1\right)=a^2+4x\)

\(\Leftrightarrow2ax+2a=a^2+4x\Leftrightarrow a^2+4ax-2a-2ax=0\)

\(\Leftrightarrow\left(a^2-2ax\right)-\left(2a-4x\right)=0\Leftrightarrow a\left(a-2x\right)-2\left(a-2x\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a-2x\right)=0\)

đến đây tự làm nhé