K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 6 2019

Phương trình có vô số nghiệm

Nếu thay \(\sqrt{y-2008}\) bằng \(\sqrt{y+2008}\) thì phương trình có bộ nghiệm duy nhất: \(\left(x;y;z\right)=\left(2010;-2007;3\right)\)

4 tháng 4 2017

k biết

4 tháng 4 2017

tốt ghê ha

nếu vậy thì đừng trả lời

4 tháng 4 2017

đề sai à

4 tháng 4 2017

đề đúng đó

4 tháng 12 2016

\(x-2008=X;y-2009=Y;z-2010=Z\)

\(\sqrt{X}+\sqrt{Y}+\sqrt{Z}+3012=\frac{1}{2}\left(X+Y+Z+2008+2009+2010\right)\)

\(2.\sqrt{X}+2\sqrt{Y}+2\sqrt{Z}+2.3012=X+Y+Z+2009\cdot3\)

\(\left(X-2\sqrt{X}+1\right)+\left(Y-2\sqrt{Y}+1\right)+\left(Z-2\sqrt{Z}+1\right)+3.2008=2.3012\)

\(\left(\sqrt{X}-1\right)^2+\left(\sqrt{Y}-1\right)^2+\left(\sqrt{Z}-1\right)^2=2.3012-3.2008=0\)

\(X=1;Y=1;Z=1\Rightarrow x=2009;y=2010;z=2011\)

18 tháng 8 2020

\(x^2+2x\sqrt{x+\frac{1}{x}}=8x-1\)(đk;x>0)

\(\Leftrightarrow x^2+2\sqrt{x}\cdot\sqrt{x^2+1}=8x-1\)

\(\Leftrightarrow\left(x^2+1\right)+2\sqrt{x}\cdot\sqrt{x^2+1}+x=9x\)

\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}\right)^2-9x=0\)

\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}+3\sqrt{x}\right)\left(\sqrt{x^2+1}+\sqrt{x}-3\sqrt{x}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2+1}+4\sqrt{x}\right)\left(\sqrt{x^2+1}-2\sqrt{x}\right)=0\)

\(\Leftrightarrow\sqrt{x^2+1}-2\sqrt{x}=0\)(vì \(\sqrt{x^2+1}+4\sqrt{x}>0\))

\(\Leftrightarrow x^2-4x+1=0\)

\(\Leftrightarrow\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2-\sqrt{3}\\x=2+\sqrt{3}\end{cases}}\)(thõa mãn điều kiện)

18 tháng 8 2020

\(\sqrt{x-2009}-\sqrt{y-2008}-\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)(đk:x>2009,y>2008,z>2)

\(\Leftrightarrow\left(\sqrt{x-2009}-1\right)^2+\left(\sqrt{x-2008}+1\right)^2+\left(\sqrt{z-2}+1\right)^2+4014=0\)(không thõa mãn)

Lý do có kết quả trên là vì chuyển 1\2 qua vế trái và tách theo hằng đẳng thức

Bài tiếp theo cũng làm tương tự

3 tháng 4 2016

bạn ơi đề đúng ko vậy

3 tháng 4 2016

Nhân hai vế với 2 :
2*\(\sqrt{x+2}\)*\(\sqrt{y-1}\) + 2*\(\sqrt{z-2}\) = x + y + z
<=>[ x - 2*\(\sqrt{x+1}\)] +[ (y - 1) - 2*\(\sqrt{y-1}\) + 1] + [(z - 2) - 2\(\sqrt{z-2}\) + 1 ] = 0
<=> [\(\sqrt{x-1}^2\) + [\(\sqrt{y-1}-1\)]2 + [\(\sqrt{z-2}-1\))2 = 0
=> x = 1 , y = 2 và z = 3

9 tháng 6 2015

Điều kiện : \(x\ge2;y\ge-2009;z\ge2010;x+y+z\ge0\)

PT <=> \(2.\sqrt{x-2}+2.\sqrt{y+2009}+2.\sqrt{z-2010}=x+y+z\)

Áp dụng B ĐT Cô- si với 2 số dương a; b : \(2\sqrt{ab}\le a+b\) ta có:

\(2.\sqrt{x-2}\le x-2+1=x-1\)

\(2.\sqrt{y+2009}\le y+2009+1=y+2010\)

\(2.\sqrt{z-1010}\le z-2010+1=z-2009\)

=> \(2.\sqrt{x-2}+2.\sqrt{y+2009}+2.\sqrt{z-2010}\le x-1+y+2010+z-2009=x+y+z\)

Dấu "=" xảy ra <=> x - 2 = 1 ; y + 2009 = 1; z - 2010 = 1

=> x = 3; y = -2008; z = 2011 là nghiệm của PT

26 tháng 3 2016

Điều kiện \(x\ge2\) vs \(y\ge-2009\) vs \(z\ge2010\)  Khi đó

PT \(\Leftrightarrow\) \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2009}-1\right)^2+\left(\sqrt{z-2010}-1\right)^2=0\)

nên => x=3 ; y=-2008 vs z=2011