K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2015

ĐK: \(x^3+3x^2-3x+1\ge0\)

\(pt\Leftrightarrow\sqrt[3]{9x^2-15x+9}-\left(2-x\right)+\sqrt{x^3+3x^2-3x+1}=0\)

\(\Leftrightarrow\frac{9x^2-15x+9-\left(2-x\right)^3}{A^2+AB+B^2}+\sqrt{x^3+3x^2-3x+1}=0\)

\(\left(A=\sqrt[3]{9x^2-15x+9};\text{ }B=2-x\right)\)\(\text{(}A^2+AB+B^2=\left(A+\frac{B}{2}\right)^2+\frac{3B^2}{4}>0\text{)}\)

\(\Leftrightarrow\frac{x^3+3x^2-3x+1}{A^2+AB+B^2}+\sqrt{x^3+3x^2-3x+1}=0\)

\(\Leftrightarrow\sqrt{x^3+3x^2-3x+1}\left(\frac{\sqrt{x^3+3x^2-3x+1}}{A^2+AB+B^2}+1\right)=0\)

\(\Leftrightarrow x^3+3x^2-3x+1=0\text{ (do }\frac{\sqrt{x^3+3x^2-3x+1}}{A^2+AB+B^2}+1>0\text{)}\)

\(\Leftrightarrow\left(x+1+\sqrt[3]{2}+\sqrt[3]{4}\right)\left[x^2+\left(2-\sqrt[3]{2}-\sqrt[3]{4}\right)x+\sqrt[3]{2}-1\right]=0\)

\(\Leftrightarrow x+1+\sqrt[3]{2}+\sqrt[3]{4}=0\text{ (}pt\text{ }x^2+\left(2-\sqrt[3]{2}-\sqrt[3]{4}\right)x+\sqrt[3]{2}-1=0\text{ vô nghiệm do }\Delta

24 tháng 8 2019

a, \(5\sqrt{2x^2+3x+9}=2x^2+3x+3\) (*)

Đặt \(2x^2+3x=a\left(a\ge-9\right)\)

=> \(5\sqrt{a+9}=a+3\)

<=> \(25\left(a+9\right)=a^2+6a+9\)

<=> \(25a+225=a^2+6a+9\)

<=> \(0=a^2+6a+9-25a-225=a^2-19a-216\)

<=> 0= \(a^2-27a+8a-216\)

<=> \(\left(a-27\right)\left(a+8\right)=0\)

=> \(\left[{}\begin{matrix}a=27\\a=-8\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}2x^2+3x=27\\2x^2+3x=-8\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}2x^2+3x-27=0\\2x^2+3x+8=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}\left(x-3\right)\left(2x+9\right)=0\\2\left(x^2+2.\frac{3}{4}+\frac{9}{16}\right)+\frac{55}{8}=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=3\left(tm\right)\\x=-\frac{9}{2}\left(tm\right)\\2\left(x+\frac{3}{4}\right)^2=-\frac{55}{8}\left(ktm\right)\end{matrix}\right.\)

Vậy pt (*) có tập nghiệm \(S=\left\{3,-\frac{9}{2}\right\}\)

b, \(9-\sqrt{81-7x^3}=\frac{x^3}{2}\left(đk:x\le\sqrt[3]{\frac{81}{7}}\right)\)(*)

<=> \(\sqrt{81-7x^3}=9-\frac{x^3}{2}\)

<=>\(81-7x^3=\left(9-\frac{x^3}{2}\right)^2=81-9x^3+\frac{x^6}{4}\)

<=> \(-7x^3+9x^3-\frac{x^6}{4}=0\) <=> \(2x^3-\frac{x^6}{4}=0\)<=> \(8x^3-x^6=0\)

<=> \(x^3\left(8-x^2\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\8=x^2\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=0\left(tm\right)\\x=\pm2\sqrt{2}\left(ktm\right)\end{matrix}\right.\)

Vậy pt (*) có nghiệm x=0

24 tháng 8 2019

d,\(\sqrt{9x-2x^2}-9x+2x^2+6=0\) (*) (đk: \(0\le x\le\frac{1}{2}\))

<=> \(\sqrt{9x-2x^2}-\left(9x-2x^2\right)+6=0\)

Đặt \(\sqrt{9x-2x^2}=a\left(a\ge0\right)\)

\(a-a^2+6=0\)

<=> \(a^2-a-6=0\) <=> \(a^2-3x+2x-6=0\)

<=> \(\left(a-3\right)\left(a+2\right)=0\)

=> \(a-3=0\) (vì a+2>0 vs mọi \(a\ge0\))

<=> a=3 <=>\(\sqrt{9x-2x^2}=3\) <=> \(9x-2x^2=9\)

<=> 0=\(2x^2-9x+9\) <=> \(2x^2-6x-3x+9=0\) <=>\(\left(2x-3\right)\left(x-3\right)=0\)

=> \(\left[{}\begin{matrix}2x=3\\x=3\end{matrix}\right.< =>\left[{}\begin{matrix}x=\frac{3}{2}\\x=3\end{matrix}\right.\)(t/m)

Vậy pt (*) có tập nghiệm \(S=\left\{\frac{3}{2},3\right\}\)

NV
24 tháng 11 2018

a/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge-1\\x\le-5\end{matrix}\right.\)

Bình phương 2 vế:

\(x^2+3x+2+2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}+x^2+6x+5=2x^2+9x+7\)

\(\Leftrightarrow2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+3x+2=0\\x^2+6x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\left(l\right)\\x=-5\end{matrix}\right.\)

Vậy pt có 2 nghiệm \(x=-1;x=-5\)

b/ ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\Rightarrow a^2-6=3x+2\sqrt{2x^2+5x+3}-2\)

Phương trình trở thành:

\(a=a^2-6\Leftrightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=-2\left(l\right)\\a=3\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)

\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-3x\ge0\\4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{5}{3}\\x^2-50x+13=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=25+6\sqrt{17}\left(l\right)\\x=25-6\sqrt{17}\end{matrix}\right.\)

Vậy pt có nghiệm duy nhất \(x=25-6\sqrt{17}\)

24 tháng 11 2018

a) \(\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}=\sqrt{\left(x+1\right)\left(2x+7\right)}\)

\(ĐK\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge-2\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}-\sqrt{\left(x+1\right)\left(2x+7\right)}=0\)

\(\Leftrightarrow\sqrt{\left(x+1\right)}\left(\sqrt{x+2}+\sqrt{x+5}-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\sqrt{x+2}+\sqrt{x+5}=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+2+x+5+2\sqrt{\left(x+2\right)\left(x+5\right)}=2x+7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2\sqrt{\left(x+2\right)\left(x+5\right)}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=-5\end{matrix}\right.\)

vậy \(S=\left\{-1;-2;-5\right\}\)

6 tháng 2 2021

Giải phương trình $x^2-4x+6=\sqrt{2x^2-5x+3}+\sqrt{-3x^2+9x-5}$ - Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học

 
6 tháng 2 2021

bn giải cụ thể đc không ạ ?

7 tháng 12 2019

\(ĐKXĐ:x\ge-1,5\)

\(=>\left(2\sqrt{2x^3+5x^2+9x+9}\right)^2=\left(x^2+3x+6\right)^2\)

=>\(8x^3+20x^2=x^4+6x^3+21x^2\) ( Đã đc rút gọn )

=> \(x^4+6x^3+21x^2-\left(8x^3+20x^2\right)=0\)

=> \(x^4-2x^3+x^2=0\)

=> \(x^2\left(x-1\right)^2=0\)

=> \(\left[{}\begin{matrix}x^2=0\\\left(x-1\right)^2=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left|x\right|=\sqrt{0}\\\left|x-1\right|=\sqrt{0}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy....

8 tháng 11 2016

vô nghiện

8 tháng 11 2016

theo mik thì vô no

f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)

\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)

\(\Leftrightarrow\left|x+1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)

\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1