K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2020

\(ĐK:-1\le x\le8\)

Đặt \(\sqrt{1+x}=u;\sqrt{8-x}=v\)thì \(\left(u+v\right)^2=9+2\sqrt{uv}\Rightarrow\sqrt{uv}=\frac{\left(u+v\right)^2-9}{2}\)

Phương trình lúc này có dạng \(\left(u+v\right)+\frac{\left(u+v\right)^2-9}{2}=3\Leftrightarrow\left(u+v\right)^2+2\left(u+v\right)-15=0\)\(\Leftrightarrow\left(u+v+5\right)\left(u+v-3\right)=0\Leftrightarrow\orbr{\begin{cases}u+v=-5\left(L\right)\\u+v=3\left(tm\right)\end{cases}}\)

Như vậy, \(u+v=3\Rightarrow\sqrt{uv}=\frac{3^2-9}{2}=0\Rightarrow uv=0\)

u, v là hai nghiệm của phương trình \(t^2-3t=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=0\end{cases}}\)

* Nếu u = 3, v = 0 thì \(\hept{\begin{cases}\sqrt{1+x}=3\\\sqrt{8-x}=0\end{cases}}\Rightarrow x=8\left(tm\right)\)

* Nếu u = 0, v = 3 thì \(\hept{\begin{cases}\sqrt{1+x}=0\\\sqrt{8-x}=3\end{cases}}\Rightarrow x=-1\left(tm\right)\)

Vậy phương trình có tập nghiệm \(S=\left\{-1;8\right\}\)

9 tháng 10 2020

thể giải thích chỗ \(\left(u+v\right)^2=9+2\sqrt{uv}\) đc ko

15 tháng 9 2018

\(\sqrt{x+3}+\sqrt{1-x}=2-8\sqrt{\left(x+3\right)\left(x+1\right)}\)

\(\Leftrightarrow\sqrt{x+3}+\sqrt{1-x}-2+8\sqrt{\left(x+3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\sqrt{x+3}-\frac{x+3}{\sqrt{1-x}+2}+8\sqrt{\left(x+3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(1-\frac{\sqrt{x+3}}{\sqrt{1-x}+2}+8\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\sqrt{x+3}=0\)

\(\Leftrightarrow x=-3\)

\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\) ĐK : \(-1\le x\le8\)

Đặt \(\sqrt{1+x}+\sqrt{8-x}=a\left(a\ge0\right)\)

\(\Leftrightarrow a+\frac{a^2-9}{2}=3\)

\(\Leftrightarrow a^2+2a-15=0\)

\(\Leftrightarrow\left(a-3\right)\left(a+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=3\left(N\right)\\a=-5\left(L\right)\end{matrix}\right.\)

Với \(a=3\)

\(\Leftrightarrow\sqrt{1+x}+\sqrt{8-x}=3\)

\(\Leftrightarrow9+2\sqrt{\left(1+x\right)\left(8-x\right)}=9\)

\(\Leftrightarrow\left(1+x\right)\left(8-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}1+x=0\\8-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\left(TM\right)\)

Vậy \(S=\left\{-1;8\right\}\)

NV
3 tháng 6 2019

ĐKXĐ: \(-1\le x\le8\)

Đặt \(\sqrt{1+x}+\sqrt{8-x}=a>0\Rightarrow a^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\)

\(\Rightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{a^2-9}{2}\)

Phương trình trở thành:

\(a+\frac{a^2-9}{2}=3\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-5\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{1+x}+\sqrt{8-x}=3\)

Ta có \(\sqrt{1+x}+\sqrt{8-x}\ge\sqrt{1+x+8-x}=3\)

\(\Rightarrow\) Đẳng thức xảy ra khi và chỉ khi \(\left[{}\begin{matrix}1+x=0\\8-x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\)

22 tháng 6 2021

Điều kiện:`x>=2`

Ta có:

`sqrt{x+6}-sqrt{x-2}=(x+6-x+2)/(sqrt{x+6}+sqrt{x-2})`

`=8/(\sqrt{x+6}+sqrt{x-2})`

`pt<=>8/(sqrt{x+6}+sqrt{x-2})(1+sqrt{(x-2)(x+6)})=8`

`<=>(1+sqrt{(x-2)(x+6)})/(sqrt{x+6}+sqrt{x-2})=1`

`<=>1+sqrt{(x-2)(x+6)}=sqrt{x+6}+sqrt{x-2}`

`<=>sqrt{(x-2)(x+6)}-sqrt{x+6}=sqrt{x-2}-1`

`<=>sqrt{x+6}(sqrt{x-2}-1)=sqrt{x-2}-1`

`<=>(sqrt{x-2}-1)(sqrt{x+6}-1)=0`

Vì `x>=2=>x+6>=8=>sqrt{x+6}>=2sqrt2`

`=>sqrt{x+6}-1>=2sqrt2-1>0`

`<=>sqrt{x-2}=1`

`<=>x=3(tm)`

Vậy `S={3}`

13 tháng 2 2020

a) ĐKXD:...

\(pt\Leftrightarrow\left(\sqrt{x+2}+\sqrt{x-2}\right)^2=6-2x\)

\(\Leftrightarrow\sqrt{x+2}+\sqrt{x-2}=\sqrt{6-2x}\)

Đến đây dễ rồi

13 tháng 2 2020

bước đầu bạn làm sai r. nó nằm trong căn nên ko phải bình phương nên ko thể biến đổi thành tổng bình phương được