K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

\(ĐKXĐ:x\ne-2\) 

Ta thấy x=0 ko là nghiệm của phương trình. Do đó \(x\ne0\)

 \(\Rightarrow\dfrac{1}{\dfrac{x^2+4x+4}{x}}+\dfrac{5}{\dfrac{x^2+4}{x}}=-2\) (chia cả tử và mẫu của 2 phân số vế trái cho x )

 

 

\(\Leftrightarrow\dfrac{1}{x+\dfrac{4}{x}+4}+\dfrac{5}{x+\dfrac{4}{x}}=-2\)

Đặt \(x+\dfrac{4}{x}=t\) (\(t\ne0,t\ne-4\))

\(pt\) trở thành: \(\dfrac{1}{t+4}+\dfrac{5}{t}=-2\) \(\Rightarrow t+5\left(t+4\right)=-2\left(t+4\right)t\Leftrightarrow t+5t+20=-2t^2-8t\Leftrightarrow2t^2+14t+20=0\Leftrightarrow t^2+7t+10=0\) \(\Leftrightarrow\left(t+2\right)\left(t+5\right)=0\Leftrightarrow\left[{}\begin{matrix}t=-2\left(1\right)\\t=-5\left(2\right)\end{matrix}\right.\)

Từ (1) \(\Rightarrow x+\dfrac{4}{x}=-2\Rightarrow x^2+4=-2x\Leftrightarrow x^2+2x+4=0\Leftrightarrow\left(x+1\right)^2+3=0\left(VL\right)\)

Từ (2) \(\Rightarrow x+\dfrac{4}{x}=-5\Rightarrow x^2+4=-5x\Leftrightarrow x^2+5x+4=0\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(TM\right)\\x=-4\left(TM\right)\end{matrix}\right.\) Vậy...

a) Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)

ĐKXĐ: \(x\notin\left\{3;\dfrac{1}{5}\right\}\)

Ta có: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{3\left(3-x\right)}{\left(5x-1\right)\left(3-x\right)}+\dfrac{2\left(5x-1\right)}{\left(3-x\right)\left(5x-1\right)}=\dfrac{4}{\left(5x-1\right)\left(3-x\right)}\)

Suy ra: \(9-3x+10x-2=4\)

\(\Leftrightarrow7x+7=4\)

\(\Leftrightarrow7x=-3\)

hay \(x=-\dfrac{3}{7}\)

Vậy: \(S=\left\{-\dfrac{3}{7}\right\}\)

ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{5x-2}{4-x^2}\)

\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2-5x}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(x^2-3x+2-x^2-2x-2+5x=0\)

\(\Leftrightarrow0x=0\)(luôn đúng)

Vậy: S={x|\(x\notin\left\{2;-2\right\}\)}

7 tháng 2 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)

undefined

undefined

1: Ta có: \(\dfrac{-3}{x-4}-\dfrac{3-5x}{x^2-16}=\dfrac{1}{x+4}\)

Suy ra: \(-3\left(x+4\right)-3+5x=x-4\)

\(\Leftrightarrow-3x-12-3+5x-x+4=0\)

\(\Leftrightarrow x=11\left(nhận\right)\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

2. ĐKXĐ: $x\neq \pm 2$

PT \(\Leftrightarrow \frac{3(x-2)}{(2+x)(x-2)}-\frac{x-1}{(x-2)(x+2)}=\frac{2(x+2)}{(x-2)(x+2)}\)

\(\Leftrightarrow \frac{3(x-2)-(x-1)}{(x-2)(x+2)}=\frac{2(x+2)}{(x-2)(x+2)}\)

\(\Rightarrow 3(x-2)-(x-1)=2(x+2)\)

\(\Leftrightarrow 2x-5=2x+4\Leftrightarrow 9=0\) (vô lý)

Vậy pt vô nghiệm

 

7 tháng 6 2017

giải pt sau

g) 11+8x-3=5x-3+x

\(\Leftrightarrow\) 8x + 8 = 6x - 3

<=> 8x-6x = -3 - 8

<=> 2x = -11

=> x=-\(\dfrac{11}{2}\)

Vậy tập nghiệm của PT là : S={\(-\dfrac{11}{2}\)}

h)4-2x+15=9x+4-2x

<=> 19 - 2x = 7x + 4

<=> -2x - 7x = 4 - 19

<=> -9x = -15

=> x=\(\dfrac{15}{9}=\dfrac{5}{3}\)

Vậy tập nghiệm của pt là : S={\(\dfrac{5}{3}\)}

g)\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)

<=> \(\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{5.2+6.2x}{6}\)

<=> 9x + 6 - 3x + 1 = 10 + 12x

<=> 6x + 7 = 10 + 12x

<=> 6x -12x = 10-7

<=> -6x = 3

=> x= \(-\dfrac{1}{2}\)

Vậy tập nghiệm của PT là : S={\(-\dfrac{1}{2}\)}

\(h,\dfrac{x+4}{5}-x+4=\dfrac{4x+2}{5}-5\)

<=> \(\dfrac{x+4-5\left(x+4\right)}{5}=\dfrac{4x+2-5.5}{5}\)

<=> x + 4 - 5x - 20 = 4x + 2 - 25

<=> x - 5x - 4x = 2-25-4+20

<=> -8x = -7

=> x= \(\dfrac{7}{8}\)

Vậy tập nghiệm của PT là S={\(\dfrac{7}{8}\)}

\(i,\dfrac{4x+3}{5}-\dfrac{6x-2}{7}=\dfrac{5x+4}{3}+3\)

<=> \(\dfrac{21\left(4x+3\right)}{105}\)-\(\dfrac{15\left(6x-2\right)}{105}\)=\(\dfrac{35\left(5x+4\right)+3.105}{105}\)

<=> 84x + 63 - 90x + 30 = 175x + 140 + 315

<=> 84x - 90x - 175x = 140 + 315 - 63 - 30

<=> -181x = 362

=> x = -2

Vậy tập nghiệm của PT là : S={-2}

K) \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)

<=> \(\dfrac{5\left(5x+2\right)}{30}-\dfrac{10\left(8x-1\right)}{30}=\dfrac{6\left(4x+2\right)-150}{30}\)

<=> 25x + 10 - 80x - 10 = 24x + 12 - 150

<=> -55x = 24x - 138

<=> -55x - 24x = -138

=> -79x = -138

=> x=\(\dfrac{138}{79}\)

Vậy tập nghiệm của PT là S={\(\dfrac{138}{79}\)}

m) \(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{15}\)

<=> \(\dfrac{3\left(2x-1\right)-5\left(x-2\right)}{15}=\dfrac{x+7}{15}\)

<=> 6x - 3 - 5x + 10 = x+7

<=> x + 7 = x+7

<=> 0x = 0

=> PT vô nghiệm

Vậy S=\(\varnothing\)

n)\(\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{2}\left(x+1\right)-\dfrac{1}{3}\left(x+2\right)\)

<=> \(\dfrac{1}{4}x+\dfrac{3}{4}=3-\dfrac{1}{2}x-\dfrac{1}{2}-\dfrac{1}{3}x-\dfrac{2}{3}\)

<=> \(\dfrac{1}{4}x+\dfrac{1}{2}x+\dfrac{1}{3}x=3-\dfrac{1}{2}-\dfrac{2}{3}-\dfrac{3}{4}\)

<=> \(\dfrac{13}{12}x=\dfrac{13}{12}\)

=> x= 1

Vậy S={1}

p) \(\dfrac{x}{3}-\dfrac{2x+1}{6}=\dfrac{x}{6}-6\)

<=> \(\dfrac{2x-2x+1}{6}=\dfrac{x-36}{6}\)

<=> 2x -2x + 1= x-36

<=> 2x-2x-x = -37

=> x = 37

Vậy S={37}

q) \(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)

<=> \(\dfrac{4\left(2+x\right)-20.0,5x}{20}=\dfrac{5\left(1-2x\right)+20.0,25}{20}\)

<=> 8 + 4x - 10x = 5 - 10x + 5

<=> 4x-10x + 10x = 5+5-8

<=> 4x = 2

=> x= \(\dfrac{1}{2}\)

Vậy S={\(\dfrac{1}{2}\)}

7 tháng 6 2017

g) \(11+8x-3=5x-3+x\)

\(\Leftrightarrow8+8x=6x-3\)

\(\Leftrightarrow8x-6x=-3-8\)

\(\Leftrightarrow2x=-11\)

\(\Leftrightarrow x=-\dfrac{11}{2}\)

h, \(4-2x+15=9x+4-2x\)

\(\Leftrightarrow-2x-9x+2x=4-4-15\)

\(\Leftrightarrow-9x=-15\)

\(\Leftrightarrow x=\dfrac{-15}{-9}=\dfrac{5}{3}\)

a: \(\Leftrightarrow7\left(7-3x\right)+12\left(5x+2\right)=84\left(x+13\right)\)

\(\Leftrightarrow49-21x+60x+24=84x+1092\)

\(\Leftrightarrow39x-84x=1092-73\)

=>-45x=1019

hay x=-1019/45

b: \(\Leftrightarrow21\left(x+3\right)-14=4\left(5x+9\right)-7\left(7x-9\right)\)

=>21x+63-14=20x+36-49x+63

=>21x+49=-29x+99

=>50x=50

hay x=1

c: \(\Leftrightarrow7\left(2x+1\right)-3\left(5x+2\right)=21x+63\)

=>14x+7-15x-6-21x-63=0

=>-22x-64=0

hay x=-32/11

d: \(\Leftrightarrow35\left(2x-3\right)-15\left(2x+3\right)=21\left(4x+3\right)-17\cdot105\)

=>70x-105-30x-45=84x+63-1785

=>40x-150-84x+1722=0

=>-44x+1572=0

hay x=393/11

19 tháng 2 2022

a, msc 12.7=84 

Chuyển vế về =0 rồi làm

b,msc 28

c,làm tương tự

11 tháng 8 2021

\(1,\dfrac{4x-4}{3}=\dfrac{7-x}{5}\\ \Leftrightarrow5\left(4x-4\right)=3\left(7-x\right)\\ \Leftrightarrow20x-20=21-3x\\ \Leftrightarrow17x=41\Leftrightarrow x=\dfrac{41}{17}\)

\(2,\dfrac{3x-9}{5}=\dfrac{3-x}{2}\\ \Leftrightarrow6x-18=15-5x\\ \Leftrightarrow11x=33\\ \Leftrightarrow x=3\)

\(3,\dfrac{2x-1}{5}-\dfrac{3-x}{3}=1\\ \Leftrightarrow\dfrac{6x-3-15+5x}{15}=1\\ \Leftrightarrow11x-18=1\\ \Leftrightarrow x=\dfrac{19}{11}\)

\(4,\dfrac{x-5}{3}+\dfrac{3x+4}{2}=\dfrac{5x+2}{6}\\ \Leftrightarrow2x-10+9x+12=5x+2\\ \Leftrightarrow6x=0\Leftrightarrow x=0\)

\(5,\dfrac{x-3}{2}+\dfrac{2x+3}{5}=\dfrac{2x+5}{10}\\ \Leftrightarrow5x-15+4x+6=2x+5\\ \Leftrightarrow7x=14\\ \Leftrightarrow x=2\)

Tick nha

2: Ta có: \(\dfrac{3x-9}{5}=\dfrac{3-x}{2}\)

\(\Leftrightarrow6x-18=15-5x\)

\(\Leftrightarrow11x=33\)

hay x=3

16 tháng 2 2018

điều kiện xác định \(x\ne0\)

ta có : \(\dfrac{x+1}{x^2+2x+4}-\dfrac{x-2}{x^2-2x+4}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x^2-2x+4\right)-\left(x-2\right)\left(x^2+2x+4\right)}{\left(x^2+2x+4\right)\left(x^2-2x+4\right)}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)

\(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-\left(x^3+2x^2+4x-2x^2-4x-8\right)}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-x^3-2x^2-4x+2x^2+4x+8}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{-x^2+2x+12}{x^4+4x^2+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)

\(\Leftrightarrow-x^2+2x+12=\dfrac{6}{x}\Leftrightarrow x\left(-x^2+2x+12\right)=6\)

\(\Leftrightarrow-x^3+2x^2+12x=6\Leftrightarrow-x^3+2x^2+12x-6=0\)

tới đây bn bấm máy tính nha

16 tháng 2 2018

câu b lm tương tự nha

4 tháng 5 2018

*\(\dfrac{x-1}{x+2}\)-\(\dfrac{x}{x+2}\)=\(\dfrac{5x-2}{4-x^2}\).ĐKXĐ: x\(\ne\pm2\)

<=>\(\dfrac{\left(x-1\right)\left(2-x\right)}{4-x^2}\)-\(\dfrac{x\left(2-x\right)}{4-x^2}\)=\(\dfrac{5x-2}{4-x^2}\)

=>2x-\(x^2\)-2+x-2x+\(x^2\)=5x-2

<=>x-2=5x-2

<=>x-5x=2-2

<=>-4x=0

<=> x = 0(TM)

Vậy phương trình có tập nghiệm là S={0}

4 tháng 5 2018

*(x+4)(5x+9)-x-4=0

<=>(x+4)(5x+9)-(x+4)=0

<=>(x+4)(5x+9-1)=0

<=>(x+4)(5x+8)=0

<=>x+4= 0 hoặc 5x+8=0

(+) x+4=0 (+)5x+8=0

<=>x=-4 <=>5x=-8

<=>x=\(\dfrac{-8}{5}\)

Vậy phương trình có tập nghiệm là S={\(-4;\dfrac{-8}{5}\)}

\(\Leftrightarrow\dfrac{-7}{x^2+3x-10}+\dfrac{x+4}{x+5}+\dfrac{x+3}{x-2}+3=0\)

\(\Leftrightarrow-7+x^2+2x-8+x^2+8x+15+3x^2+9x-30=0\)

\(\Leftrightarrow5x^2+19x-30=0\)

hay \(x\in\left\{\dfrac{6}{5}\right\}\)